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Quantum Mechanics 

The branch of mechanics that deals with the mathematical description of the motion and 

interaction of subatomic particles, incorporating the concepts of quantisation of energy, wave –

particle duality, the uncertainty principle and the corresponding principles.  

Introduction: 

At the end of 19th century and in the beginning of 20th century, many new phenomena such as 

photoelectric effect, Compton Effect, pair production, Zeeman Effect, radiation effects, nuclear 

radiations etc., were discovered. Since classical mechanics fails to explain the above 

phenomena, a new physics known as modern physics was developed on the basis of quantum 

theory of radiation. In order to explain the distribution of energy in the blackbody radiation 

Planck introduced the concept of quantum theory of radiation in 1900. 

Radiation: 

Radiation is defined as the energy that travels through space or matter in the form of a particle or 

wave. 

In physics, radiation is the emission or transmission of energy in the form of waves or particles 

through space or a material medium.  

It is a process of transmission of energy from one place to another without the aid of any 

intervening medium. 

Light and heat are types of radiation. Heat radiation is also called thermal radiation. 

                                                    OR 

“Radiation is the emission of electromagnetic waves by matter when supplied with appropriate 

amount of energy”. 

A photon is the smallest discrete packet or quantum of electromagnetic radiation. It is the basic 

unit of all light. 

The basic properties of photons are: 

 A packet or bundle of energy is called a photon 

 The energy of a photon is E = hν = hc/λ 

 The momentum of the photon is p = E/c = h/λ 

 Photon can carry energy and momentum which are dependent on the frequency. 

 The rest mass of the photon is zero and hence they can exist only moving states. 

 They are charge less particles and are not affected by either electric or magnetic field,  

 They are stable and having integral spin (spin-1 particles) which make them as bosons. 

 They can have interactions with other particles such as electrons, protons, neutrons, etc.,  

 They can travel with the speed of light in free space or vacuum. 

Planck’s Quantum Theory of Radiation: 

In the year 1900, Max Planck propounded the quantum theory of radiation. According to this 

theory, the emission and absorption of radiation is not continuous but it is in the form of packets 

of definite and discrete set of energy. Each packet is called the quanta or photon which has a 

definite energy and definite momentum whose value is proportional to the frequency of 

radiation. If ‘ν’ is the frequency of radiation, the energy of each photon is given by, 

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Particle
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

hc
hvEvE   or                   

 or                   But, 2



h
mc

hc
mcE   

If a photon of mass ‘m’ moving with a velocity ‘c’, then its momentum p = mc 

p

hh
p  


or          

But, if photon of mass ‘m’ moving with a velocity ‘v’, then its momentum is p = mv  

mv

h

p

hh
p  


or          

Where ‘h’ is a universal constant, called the Planck's constant. Its value is 6.625 x 10-34 Js, c is 

the speed of light.  
 

Matter Waves 

Dual Nature of Matter: 

The wave theory of electromagnetic radiation satisfactorily explains the phenomena of 

reflection, refraction, interference, diffraction and polarization. But it failed to explain the 

phenomena of Photoelectric Effect, Compton Effect. 

On the other hand, they were explained on the basis of quantum theory of radiation. According 

to which a beam of light of frequency  consists of small packets each having energy hν called 

photon or quanta. 

Sometimes these photons behave like a waves and sometimes like a corpuscles i.e., particles. 

Thus radiation have dual nature i.e., wave and particle or quantum nature. 
 

Matter waves and their characteristics properties 

In 1924 Louis de Broglie suggested that the particles like protons, electrons, & neutrons in 

motion exhibit characteristic properties of waves. Thus a moving particle can be associated with 

a wave or a wave can guide the motion of the particle. Hence the waves associated with the 

moving particles are known as de-Broglie waves or matter waves. 

According to de-Broglie hypothesis, a particle of mass ‘m’ moving with velocity ‘v’ is 

associated with the wave. This wave is called matter wave. The wavelength of matter wave in 

terms of its momentum ‘p’ is, 

p

h

mv

h
  

1. Matter waves are the waves associated with moving particles. 

2. Lighter the particles, greater is the wavelength associated with it, because   here     

  1/m 

3. Greater the velocity of the particle, smaller is the wavelength associated with the particle.  

  1/v 

4. Matter waves are not electromagnetic waves. Since they don’t depends on the charge of the 

particle. 
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5. The velocity of the matter waves is not constant. But it depends on the velocity of the 

particle. 

6. Light wave has got same velocity, for all wavelengths. But in case of matter waves, the 

velocity is inversely proportional to the wavelength. 

7. It is not possible to determine the exact position and momentum of a moving particle 

simultaneously. 

8. Matter waves are also called as de-Broglie waves (or) pilot waves. 

 

Note: (i) : If a particle of mass ‘m’ moving with a velocity ‘v’, then its kinetic energy                   

E = ½ mv2     or  m2v2 = 2mE  or mEmv 2  

 
mE

h

mv

h

2
  is the expression for deBroglie wavelength in terms of kinetic energy E. 

         (ii) : we know that, if an electron is accelerated under the potential difference of V, then 

the energy acquired by it will be ‘eV’, then 

meV

h

p

h

meVpmeVpor

m

p

m

vm
mveV

2
  

2or            2    

22

1

2

1

2

222
2









 

This is the expression for deBroglie wavelength in terms of accelerating potential V. 

 

Problems:-  

(1) Calculate the de-Broglie wavelength associated with an electron having a kinetic energy 

of 100 eV. 

Data:- ? , E=100eV=100 x 1.602 x10-19J 











 A 228.110228.1

10602.11001011.92

1063.6

2

10

1931

34

m
mE

h
  

(2) (May22) Evaluate the de-Broglie wavelength of Helium Nucleus accelerated through a 

potential difference of 500 V. 

Data:- ? , V=500V, m=4mp=4x1.673x10-27kg 











 A640310403.6

50010602.110673.142

1063.6

2

13

1927

34

m
meV

h
  

(3) Calculate the de-Broglie wavelength of an electron accelerated under a potential 

difference of 100 V. 

Soln.: ? , V=100V 











 A228.110228.1

10010602.11011.92

1063.6

2

10

1931

34

m
meV

h
  
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(4) Compute the de-Broglie wavelength for a neutron moving with one tenth part of the 

velocity of light. Given mass of neutron=1.674x10-27kg. 

Soln.: ? , kgmand
c

v n

2710674.1
10

  

m
mv

h 14

8
27

34

10320.1

10

103
10674.1

1063.6 











  

(5) Find the KE of a neutron which has a wavelength of 3Å. Given its mass=1.674x10-27kg. 

 
 

eVJ

m

h
E

mE

h

321

21027

234

2

2

10114.91046.1
10310674.12

1063.6

2
              

2


















 

(6) Estimate the potential difference through which a proton is needed to be accelerated so 

that its de- Broglie wavelength becomes equal to 1 Å, given that its mass is1.673x10-27kg.  

 
 

.082.0
10110602.110673.12

1063.6

2
         

2

2101927

234

2

2

V

me

h
V

meV

h
















 

(7) The kinetic energy of an electron is equal to the energy of photon with a wavelength of 

560nm. Calculate the de-Broglie wavelength of the electron. 

?,10560560, 9   


 mnm
hc

hE p

 

eVJ
hc

E
p

217.210552.3
10560

1031063.6 19

9

834





 






 

m
mE

h 10

1931

34

1025.8
10552.31011.92

1063.6

2











  

(8) Calculate the de-Broglie wavelength associated with an electron having a kinetic energy of 

100 eV. 

Soln.: ? , E=100eV=100 x 1.602 x10-19J 

m

mE

h

10

1931

34

10228.1

10602.11001011.92

1063.6

2





















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(9) (May22) Evaluate the de-Broglie wavelength of Helium Nucleus accelerated through a 

potential difference of 500 V. 

Soln.: ? , V = 500V, m = 4mp = 4x1.673x10-27kg 

m

meV

h

13

1927

34

10403.6

50010602.110673.142

1063.6

2
















 

(10) Calculate the de-Broglie wavelength of an electron accelerated under a potential difference 

of 100 V. 

Soln.: ? , V=100V 

m

meV

h

10

1931

34

10228.1

10010602.11011.92

1063.6

2
















 

(11) Compute the de-Broglie wavelength for a neutron moving with one tenth part of the 

velocity of light. Given mass of neutron=1.674X 10-27kg. 

Soln.: ? , kgmand
c

v n

2710674.1
10

  

m

mv

h

14

8
27

34

10320.1

10

103
10674.1

1063.6

















 

(12) Find the KE of a neutron which has a wavelength of 3Å. Given its mass=1.674X 10-27kg. 

 
 

J

m

h
E

mE

h

21

21027

234

2

2

1046.1

10310674.12

1063.6

2

2






















 

(13) Estimate the potential difference through which a proton is needed to be accelerated so that 

its de- Broglie wavelength becomes equal to 1Å, given that its mass is1.673X 10-27 kg.  
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 
 

.082.0

10110602.110673.12

1063.6

2

2

2101927

234

2

2

V

me

h
V

meV

h




















 

(14) The kinetic energy of an electron is equal to the energy of photon with a wavelength of 

560nm. Calculate the de-Broglie wavelength of the electron. 

?,10560560, 9   


 mnm
hc

hE p  

JE

E

hc
E

p

19

9

834

10552.3

10560

1031063.6

















 

m

mE

h

10

1931

34

1025.8

10552.31011.92

1063.6

2






















 

Wave Packet: A wave packet consisting of waves of slightly differing wavelengths may 

represent the moving particle. Superposition of these waves constituting the wave packet results 

in the net amplitude being modified, thereby defining the shape of the wave group. 

A wave is represented by the formula 

                              )( kxtASiny    

Where y is the displacement at any instant t, A is the amplitude of vibration, ω is the angular 

frequency ( = 2) and k is the wave vector (k = 2/). 

Phase Velocity (vPhase or vp) 

A point marked on a wave can be regarded as representing a particular phase for the wave at that 

point. The velocity with which such a point would propagate is known as phase velocity (or) 

wave velocity. It is represented by  

k
pphase


vor        v  

where, ω is angular frequency and k is the propagation constant or wave number 
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Group Velocity (vgroup or vg) 

The velocity with which the resultant envelops of the group of waves travels is called group 

velocity. 

It is denoted by vg or vgroup and is equal to the particle velocity v. 

dk

d
or ggroup


v           v  

 
 

 

Relation between Group Velocity vg and Phase Velocity vp 

The equations for group velocity and phase velocity are given by, 

 1           v 
dk

dw
g  

 2           v 
k

p


     

where ω is the angular frequency of the wave and k is the propagation constant or wave vector. 

 3         vp  k  
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 
 4     v

v


dk

dv
k

dk

kd

dk

dw p

p

p

 

 5         x   But, 
dk

d

d

dv
k

dk

dv
k

pp 


 

















2
                 

1
2   and

    
2

        
2

    that,know we

2

2








 




dk

d
or

d

dk

k
ork

 












d

dv

dk

dv
kor

d

dv

dk

dv
k

pp

pp

 x                             

 x 
2

x
2

   becomes, (5)eqn 
2






 

On substituting this values in equation (4) we get, 



















d

d
or

d

dV

phase

phasegroup

p

pg

v
v     v

vv

 

This is the relation between group velocity and phase velocity. 

 

Heisenberg’s uncertainty principle 

According to this principle “It is impossible to determine precisely and simultaneously the 

values of both the members of the pair of physical variables, which describe the motion of the 

atomic system”. Such variables are called canonically conjugate variables. 

Example: Position and momentum, energy and time etc., 

Statement: “it is impossible to determine simultaneously both position and momentum of a 

moving particle accurately at same time. The product of uncertainty in these quantities is always 

greater than or equal to h/4π”. 

If ∆x and ∆Px are the uncertainties in the measurement of position and momentum of a particle, 

then  

4
.

h
px x   

If ∆x is small, ∆Px will be large and vice versa. That is if one quantity is measured accurately, 

the other quantity becomes less accurate. 

Similarly the other uncertainty relations for other physical variables pair are,  
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4
.

h
tE   




4
.

h
L   

Applications of Uncertainty Principle: 

*Non-existence of electrons in the nucleus and its implications non-relativistic approach* 

According to theory of relativity, if a particle of mass moving with a velocity v ,then the energy 

E and momentum p of the particle are expressed as, 

 1           and     2  mvpmcE  

where m is the relativistic mass of a particle moving the a velocity v and the expression for it in 

terms of rest mass m0 can be written as, 

 2     
1 2

2





c

v

om
m  

     
1

22

22

0

2

02

2

2

vc

cmm
m

c

v 



  

222

0

222222

0

222 c     x or                )( cmvmcmcmvcm   

    c 42

0

22242 cmvmcm   

Since E = mc2 and p = mv, the above equation becomes 
42

0

22242

0

222 cor        c cmpEcmpE   

   3     or          2
1

22

0

222

0

2  cmpcEcmpcE  

According to Heisenberg’s uncertainty principle we have, 

 4        
.4

or        
4

. 



x

h
p

h
px xx


 

We know that the size / diameter of the nucleus is of the order of 10-14 m. If an electron is to 

exist inside the nucleus, then the uncertainty in its position x must not exceed the size of the 

nucleus, 

mxei 1410.,.   

Using x in equation (5) we have,  

Ns  105.0
104

1063.6

.4

20

14

34















 x

h
px  

Nspx   105.0 20  

This is the uncertainty in momentum of an electron and it is equal to the momentum of the 

electron inside the nucleus, 

Using momentum value Px in an equation (3) we get, 

      )103()1011.9()105.0(103 2
1

282312208 xxxxxE    
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eV
x

x
JxE

19

12
12

10602.1

105.1
105.1




   

MeVeVE 4.9.4x109  6   

An electron may exist inside the nucleus if its energy is equal to or greater than 9.4 MeV. But, 

the experimental investigations on β-decay say that kinetic energy of the β–particles is 3 to 4 

MeV. This clearly indicates that, electrons cannot exist within the nucleus. 

)(or                 )( 11 energyenpenergyepn   
 

Principle of Complementarity 

Statement: Bohr stated as “In a situation where the wave aspect of a system is revealed, its 

particle aspect is concealed; and in a situation where the particle aspect is revealed, its wave 

aspect is concealed. Revealing both simultaneously is impossible; the wave and particle aspects 

are complementary.” 

Explanation: We know that the consequence of the uncertainty principle is both the wave and 

particle nature of the matter cannot be measured simultaneously. In other words, we cannot 

precisely describe the dual nature of Light. 

• If an experiment is designed to measure the particle nature of the matter, during this 

experiment, errors of measurement of both position and the time coordinates must be zero and 

hence the momentum, energy and the wave nature of the matter are completely unknown. 

• Similarly, if an experiment is designed for measuring the wave nature of the particle, then the 

errors in the measurement of the energy and the momentum will be zero, whereas the position 

and the time coordinates of the matter will be completely unknown. unknown. 

From the above explanation, we can conclude that, when the particle nature of the matter is 

measured or displayed, the wave nature of the matter is necessarily suppressed and vice versa. 

Problems:                      

1. If the group velocity of a particle is 3x106 m/s, calculate its phase velocity.                          

(Given, c = 3x108 m/s). 

     ?    v,/ 103   ,/103   , 86  pg smcsmvGiven  

 
 

sm
V

c
Vor

cVVtkw

group

phase

phasegroup

/103
103

109

103

103
   

          ;..

10

6

16

6

282

2














 

2. Calculate the de-Broglie wavelength associated with a proton moving with a velocity equal to 

1/20 th of the velocity of light. 

      ?   ,1067.1   ,103
20

1

20

1
    v, 278  

pp kgmcGiven   

m

mv

h
tkw

p

p

14

827

34

827

34

10646.2
1031067.1

1063.620

103
20

1
1067.1

1063.6

,..



























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3. Find the kinetic energy and group velocity of an electron with de-Broglie wavelength of 0.2 

nm. 

     kgmVEKmnmGiven egroup

319 101.9  ?,   ?,.   ,102.0 2.0   ,    

smkg
h

p

p

h
tkw

/10315.3
102.0

1063.6

  ;..

24

9

34



















 

 
J

m

p
EEK 18

31

2242

10038.6
101.92

10315.3

2
. 









  

sm
m

p
VorV groupg /1064.3143.3642857

101.9

10315.3 6

31

24











 

5. If the uncertainty in the position of an electron is 4x10-10 m, calculate the uncertainty in its 

momentum. 

        ?     ,104   , 10  

xPmxGiven  

4
...w

h
pxtk x   

125

10

34

10318.1
10414.34

1063.6

4














 kgs

x

h
px


  

 

6. In a simultaneous measurement of position and velocity of an electron moving with a speed of 

6x105 m/s. Calculate the highest accuracy with which its position could be determined if the 

inherent error in the measurement of the velocity is 0.01% for the speed stated. 

       ?    %,01.0%   ,/106   , 5  xvelocityinerrorofsmvGiven  

15 60106
100

01.0

100

%

100

100
int

int









msv

v
velocityofmeasurmenttheinerrorof

v

velocity
velocityintyuncertainiofpercentage

velocityintyuncertaini

velocity

velocityinyuncerta
velocityinyuncertaofpercentage

 

nmm
vm

h
x

h
pxtk

x

x

9661066.9
60101.9142.34

1063.6

..4

4
.    ;..w

7

31

34





















 

7. An electron has a speed of 300m/s accurate to 0.01% with what fundamental accuracy can we 

locate the position of the electron. 

     0.01 = speedin accuracy  of  %  and   ?   ?,   m/s, 300=V   Given,  vx  
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smv

smvvvofv

/103

/03.0300
100

01.0

100

01.0
or        %01.0

2


 

mx

vm

h

p

h
x

h
px

x

x

3

231

34

10932.1
103101.9142.34

1063.6

..44
or         

4
.

w.k.t




















 

The maximum accuracy with which the electron can be located is 1.932 x 10-3 m. 

8. The speed of electron is measured to within an uncertainty of 1x104 m/s. What is the 

minimum space required by the electron to be confined in an atom? 

      ? ,/101 Given, 4  xsmv  

0
10

9

431

34

97.571097.57

10797.5
101101.9142.34

1063.6

..44

4
.     w.k.t;

Amx

m
vm

h

p

h
x

h
px

x

x





























 

9. The position and momentum of 1keV electron are simultaneously determined and if its 

position is located within 1Å. What is the minimum percentage of uncertainty in its 

momentum?   

       
    ?100 ,   ?       1011

J 101.602x =E  J, x1.602x101x10=E , eV1x10=E  1keV,=E  Given,

10
0

-16-1933




 

P

P
PmAx

 

125

10

34

k  10275.5
10142.34

1063.6

4
      

4
.     ;..


















gms
x

h
P

h
pxtkw

x

x




 

123

1631

10707.1

10602.1101.922

momentum,for equation   thehave we









mskgP

mEP  

1.3087.3100
10707.1

10275.5

100

23

25













momentumintyuncertainiofPercentage

momentum

momentumintyUncertaini
momentumintyuncertainiofPercentage

 

10. The inherent uncertainty in the measurement of time spent by Iridium -191 nuclei in the 

excited state is found to be 1.4x10-10s. Estimate the uncertainty that results in its energy in the 

excited state. 
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 ?    ,104.1   , 10   EstGiven  

eVeVE

J
t

h
E

h
tE

6

19

25

25

10

34

10353.2
10602.1

10768.3

10768.3
104.1142.34

1063.6

.4
     

4
.     w.k.t;


































 

11. The average time that an atom retains excess excitation energy before re- emitting it in the 

form of electromagnetic radiation is 10-8s. Calculate the limit of accuracy with which the 

excitation energy of the emitted radiation can be determined. 

                                                (OR)  

What is the minimum uncertainty in the energy state of an atom if an electron remains in this 

state for 10-8 seconds? 

     ?   ,104.1   , 10   EstGiven  

eVeVE

J
t

h
E

h
tE

8

19

27

27

8

34

10292.3
10602.1

10275.5

10275.5
10142.34

1063.6

.4
    

4
.   ;w.k.t


































 

12. An electron is confined to a box of length 10-8m. Calculate the minimum uncertainty in its  

      velocity.  

       mxvGiven 810   ?   ,   

smv

sm
xm

h
v

x

h
vm

x

h
Po

h
pxtkw

x

xx

x

/5800

/03.5797
101.910142.34

1063.6

..4
   

.4
.or         

4
r   

4
.   ;..

318

34






























 

(13) If the kinetic energy of an electron known to be about 1eV, must be measured to within 

0.0001eV, What accuracy can its position be measured simultaneously? 

Soln.: E = 1eV = 1.602x10-19J, ΔE = 0.0001eV = 0.0001x1.602x10-19J, Δx = ? 

 

E
E

m

EmmEP

mEPand
h

XP









2

22
2

1

2
4

2
1


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m

X

m

E

E

h
X

6

3119

1934

1095.1

101.910602.10001.04

10602.121063.6

21

4





















 

(14) Uncertainty in time of an exited atom is about 10-8s. What are the uncertainties in energy 

and in frequency of the radiation? 

Soln.: Δt = 10-8s, ΔE = ?, Δ = ? 

Hz

h

E

hE

hE

J

t

h
E

h
tE

6

34

27

27

8

34

1089.7

1063.6

1023.5

1023.5

104

1063.6

.4

4

















































 

(3) (May22) The position and momentum of an electron with energy 0.5 keV is found with a 

minimum percentage uncertainty in momentum. Find its uncertainty if the measurement of 

position has a uncertainty of 0.5Å. 

Soln.: E=0.5keV=0.5x103x1.602x10-19J, Percentage uncertainty in momentum = ?,                                   

           ∆x =0.5x10-10 m. 

2324

19331

10

34

10207.110055.1

10602.1105.0101.92
105.04

1063.6

2
4

2
4
























PandP

PandP

mEPand
X

h
P

mEPand
h

XP






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Questions 

Short Answer Questions 

1. What is Planck’s law of radiation? 

2. List out the characteristics of matter waves. 

3. State and explain Planck’s law of radiation. 

4. What are matter waves? 

5. Define phase velocity and group velocity. 

6. Obtain an expression for deBroglie wavelength. 

7. State and Explain deBroglie hypothesis. 

8. What are matter waves and mention their properties? 

9. Derive the relation between Phase velocity and Group velocity. 

10. What is de-Broglie concept of matter wave? Explain the characteristics of matter wave. 

11. Define phase velocity and group velocity & obtain a relation between them. 

12. State Heisenberg Uncertainty Principle. 

13. Show that the electron does not exists inside the nucleus of an atom. 

14. Explain the principle of complementarity. 

15. State and Explain Heisenberg’s uncertainty principle.  

16. Explain why electron cannot exist inside the nucleus? 

17. State and Explain the Principle of Complementarity. 

Problems: 

1. Compare the energy of photon with that of an electron when both are associated with a 

wavelength of 0.2 nm. 

2. Calculate the deBroglie wavelength of a 1000 kg automobile travelling at 100 m/s and a 0.1 

kg bullet travelling at 500 m/s. 

3. A fast moving neutron is found to a have an associated deBroglie wavelength of             2x10-

12 m. Find its kinetic energy and group velocity of the deBroglie waves using the relativistic 

change in mass. (Mass of neutron = 1.675x10-27 kg) 

6. Calculate the deBroglie wavelength associated with an electron with a kinetic energy of 2000 

eV. 

7. Calculate the momentum of the particle and the deBroglie wavelength associated with an 

electron with a kinetic energy of 1.5 keV.  

8. Calculate the wavelength associated with an electron having kinetic energy 100 eV.  

9. Calculate deBroglie wavelength associated with electron carrying energy 2000 eV.  

10. Find the energy of the neutron in eV whose deBrogle wavelength is 1 Å.  

11. Calculate deBroglie wavelength associated with neutron of mass 1.674×10−27 kg with 1/10th 

part of speed of light.  
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12. Calculate deBroglie wavelength associated with electrons whose speed is 0.01 part of the 

speed of light.  

13. What is the deBroglie wavelength of a proton whose energy is 3eV given mass of proton is 

1.67×10−27 kg.  

14. Find the kinetic energy and group velocity of an electron with deBroglie wavelength of 0.2 

nm.  

15. Calculate the deBroglie wavelength of particle of mass 0.65 MeV/c2 has a kinetic energy 80 

eV.  

16. Find deBroglie wavelength of a particle of mass 0.58 MeV/c2 has a kinetic energy 90 eV, 

where c is speed of light.  

17. A particle of mass 940 MeV/c2 has kinetic energy 0.5 keV. Find it deBroglie wavelength, 

where c is speed of light.  

18. Find the deBroglie wavelength of an electron accelerated through a potential difference of 

182 V and object of mass 1 kg moving with a speed of 1 m/s. Compare the results and 

comment.  

19. The position and momentum of an electron with energy 0.5 keV are determined. What is the 

minimum percentage uncertainty in its momentum if the uncertainty in the measurement of 

position is 0.5Å? 

20. The speed of electron is measured to within an uncertainty of 2.2×104 m/s in one dimension. 

What is the minimum width required by the electron to be confined in an atom?  
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Wave Function 

Introduction:  

In general, a wave is characterised by periodic variation in some physical quantity. 

For example – pressure varies periodically in sound waves whereas electric and magnetic fields 

vary periodically in an electromagnetic wave. Similarly, whose periodic variations make up the 

matter wave is called wave function. 

Wave Function: 

The variable quantity that characterises the deBroglie wave is called wave function. Wave 

function in quantum mechanics accounts for the wave like properties of particle and is obtained 

by solving a fundamental equation called Schrödinger’s equation. 

The wave functions vary with respect to both position co-ordinates of the physical system and 

the time (x, y, z & t) is called total wave function. 

It is denoted by the capital form of Greek letter ‘Ψ’. If the wave function has variation only with 

position (x, y, z) it is denoted by the lower case Greek letter ‘ψ’. 

The total wave function can be mathematically represented by the equation 

)( txkiAe   

Where A is a constant and w is the angular frequency of the wave 

The above equation can be written as  

tiikxeAe   

Where, ikxAe is the space dependent wave function and is therefore time independent wave 

function. tie 
is the time dependent wave function. 

The wave function ψ is a measure of finding the particle at a particular position (x, y, z) and at 

time t. 

The following are the basic properties of wave function: 

1. The wave function ψ itself does not have any physical significance. 

2. ψ is a positive or negative or complex quantity and hence it cannot be measured. 

3. ψ is a function of space and time (r, t) coordinates and describes the behaviour of a single 

particle or photon and wave nature. 

4. ψ is a large magnitude where the particle (Photon, electron etc.,) to be located and small at 

other places. 

5. The probability of finding a particle at some point in space at time ‘t’ is a positive value 

between 0 & 1; i.e., |ψ|2 is real and +ve between 0 & 1. 
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Probability Density: 

In classical mechanics, the square of wave amplitude associated with electromagnetic radiation 

is interpreted as measure of intensity. This suggests there will be a similar interpretation for de-

Broglie waves associated with electron or any particle. 

Let τ be a volume inside which a particle is present, but where exactly the particle is situated 

inside τ is not known  

“If ψ is the wave function associated with the particle then the probability of finding the particle 

in certain volume dτ of τ is equal to |ψ|2 dτ. So |ψ|2 is called the probability density”. 

|ψ|2 dτ 

This interpretation was first given by Max Born in 1926. 

If the value of |ψ|2 is large at a point in a given time, then the probability of finding the particle at 

that point and time is more. If |ψ|2 = 0, then the probability of finding the particle is zero or less. 

Therefore the total wave function can be represented by the equation, 

 1)(   txkiAe 
 

where A is a constant, ω is angular frequency of the wave 

The complex conjugate of Ψ is given by, 

 2)(*   txkiAe 
 

From equation (1) and (2), ΨΨ* is real and positive quantity which is called the probability 

density. 

2*2
 i.e, A  

Therefore 2 dx is the probability density in 1- dimension, 

and 2 dv is the probability density in 3-dimension.  

Normalization: 

According to Born’s interpretation the probability of finding the particle within an element of 

volume is2 dv, since the particle is certainly present somewhere inside the volume dv. 

Therefore “The integral of the square of the wave function over the entire volume in space must 

be equal to unity” and mathematically it is represented as, 

1vψ
2






d  

Where, the wave function satisfying the above relation is the normalized wave function. 

Very often Ψ is not a normalized wave function. If this function Ψ is multiplied by a constant A, 

then the new wave function AΨ is also a solution of the wave equation. Hence the new wave 

function is a normalized wave function, if 

1vor        1v *2  








 dAdAA   
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






v

1

*

2

d

A



 

Where A2 is known as normalizing constant, the quantity A2 represents probability. 

Therefore, the process of constructing AΨ from Ψ is called normalization of the wave function.  

Limitations of wave function:  

1. The wave function Ψ must be finite for all values of x, y, z and it is finite for a particular 

point. 

2. Ψ must be single valued everywhere for each set of x, y, z and must have unique value. 

3. Ψ must be continuous in all regions except where the potential energy V is infinite. 

4. Ψ and its first derivatives dΨ/dx, dΨ/dy, dΨ/dz must be continuous and single valued 

everywhere. 

5. Ψ must be normalised and in order that 2 dv over all space be a finite constant. 

Expectation Value 

In quantum mechanics, the expectation value is the probabilistic expected value of the result 

(measurement) of an experiment. It can be thought of as an average of all the possible 

outcomes of a measurement as weighted by their likelihood. Expectation value as such it is not 

the most probable value of a measurement. In the real sense the expectation value may have 

zero probability of occurring.  

Let us consider a particle moving along the x axis. The result of a measurement of the position 

x is a continuous random variable. Consider a wave function Ψ (x, t). The | Ψ (x, t)|2 value is a 

probability density for the position observable and | Ψ (x, t)|2dx is the probability of finding the 

particle between x and x+dx at time t. Thus, if a measurement of position is repeated many 

times in an identical way on an identical particle in identical circumstances, many possible 

outcomes are possible and the expectation value of these outcomes is, according to the 

following equation 

dxxx 





2

 t)(x,   
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Properties of Wave Functions:  

A system is characterised by its position, energy, momentum etc,. In quantum mechanics, the 

state of a system is completely characterised by a wave function. 

Physically acceptable wave function Ψ must satisfy the following conditions, 

1. Ψ is single valued everywhere 

 

If Ψ has more than one value at any point (at P, Ψ has f1, f2 and f3) it would mean more than 

one value of probability of finding the particle at that point which is obviously ridiculous. 

Therefore, Ψ must be single valued everywhere. 

2. Ψ is finite everywhere 

 

If Ψ is infinite at a point R there will be large probability of finding the particle at that point. 

This violates the uncertainty principle, therefore Ψ must have a finite or zero value at that point. 

3. Ψ and its first derivatives d/dx with respect to its variables are continuous everywhere 

 
Ψ and its first derivatives must be continuous. Since the probability can have any value between 

zero and one, the wave function must be continuous. 
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Schrodinger’s Time Independent One Dimensional Wave Equation 

Based on de-Broglie idea of matter waves, Schrödinger developed a mathematical theory for a 

particle of mass ‘m’ moving with a velocity ‘v’ along x-direction associated with a wave of 

wavelength, 

p

h

mv

h
  

 Where, p = mv is the momentum of the particle. 

Let a wave function Ψ describing the de-Broglie wave travelling in +ve   x-direction is given by, 

 1)(   txkiAe   

 Where Ψ is a total wave function, A is a constant and ω is angular frequency of wave. 

Let us differentiate Ψ (in equation 1) twice with respect to ‘x’ then 

)()( txkieikA
dx

d    

)(2

2

2

)( txkieikA
dx

d    

  12          0             22

2

2
2

2

2

 ik
dx

d
ork

dx

d






 

mv

h
andkBut  



2
 

2

222
2 4

or        
2

h

vm
k

h

vm
k


  

Hence equation (2) becomes, 

 3    0
4

2

222

2

2

 


h

vm

dx

d
 

The total energy E of the particle is the sum of kinetic energy T and potential energy V,  

VTE   

 4    )V   2(E or   

    )(
2

1
       

2

1
But

2

22





mv

VEmvmvT
 

Substitute this value of mv2 in equation (3) we get 

 50)(
8

2

2

2

2

 


VE
h

m

dx

d
 

This is known as time independent 1 - dimensional Schrödinger equation. 

Equation (5) can also be extended for 3-dimensional space as, 

 60)(
8

2

2

2

2

2

2

2

2

 


VE
h

m

dz

d

dy

d

dx

d  

 70)(
8

2

2
2  


 VE

h

m
or   

2

2

2

2

2

2
2

dz

d

dy

d

dx

d
where   
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Equation (6) and (7) are the 3-dimensional time independent Schrödinger wave equation, where 

Ψ is Ψ(x, y, z ). 

Eigen Functions and Eigen Values 

“Eigen functions are those wave functions of quantum mechanics which possess the properties 

that they are single valued, finite everywhere and also their first derivatives with respect to their 

variables are continuous everywhere”. 

When the Eigen functions are operated by quantum mechanical operators on physical quantities 

like momentum, energy etc., of a system, the possible values are observed and these values are 

called Eigen values”. 

Ex: 1. If an operator say d/dx operates on a wave function  = eax, then 

 aae
dx

de xa
xa

 

That is it produces the wave function multiplied by a constant. Such values obtained for a 

physical observable are called Eigen values. 

Here ‘a’ is the Eigen value &   = eax is the Eigen function. 
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Applications of Schrödinger wave equation to particle trapped in a one dimensional square 

potential well 

*** (Derivation of energy Eigen values and Eigen functions) *** 

 

Consider a particle of mass ‘m’ moving with a speed ‘v’ along x-axis is confined to a box of 

length ‘L’ with perfectly rigid walls at x = 0 & x = L as shown in the figure. 

The particle does not lose energy when it collides with the walls so that its total energy remains 

constant. The potential energy V of the particle is constant within the box which can be taken to 

be zero for convenience. 

 100  LxforV  

The potential energy of the particle is infinite on and beyond the walls of the box. 

 20  LxandxforV  

As the particle does not exist on the walls and beyond them, the wave function  is zero. 

 300  Lxxfor  

The wave function  exists within the box only. 

 The Schrödinger’s time independent wave equation is, 

   40
8

2

2

2

2

 


VE
h

m

dx

d  

For the particle exists inside the box, V = 0    

 Equation (4) becomes 

 50
8

2

2

2

2

 


E
h

m

dx

d
 

 6
8

let    2

2

2

 k
h

mE
 

Equation (5) becomes 

 702

2

2

 


k
dx

d  

This is the second order differential equation. The general solution of this equation is given by,  

 8cossin  xkBxkA  

where, A & B are arbitrary constants, which are to be evaluated by using boundary conditions. 

From the first boundary conditions,  = 0 at x = 0, Equation (8) becomes, 

0cos0sin0 BA   

0 B  have    we,10cos&00sinSince,   

x

0V   ψ, 

vm,

x
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 Equation (8) becomes,  

 9sin  xkA  

From second boundary conditions,  = 0 at x = L,  Equation (9) becomes,   

kLAsin0                  

OR 

0sin kLA  

. . . . . . . 3, 2, 1, =n  whereof  valuesallfor0sin,0 nkLklA   

 10
L

n
k


 

By substituting the value of k in equation (9) we get general wave function called Eigen wave 

function and Eigen energy equation.  

 11sin 







 x

L

n
An


  

This is known as Eigen function or Eigen wave function.  

Similarly by substituting the value of k in equation (6) we get, 

2

22

2

22

2

2

8
or        

8
  

mL

hn
E

L

n

h

mE



 

 12     
8

      generalIn 
2

22


mL

hn
En

 

This is the expression for Eigen values or Eigen energy values. 

Thus, we see that in a potential well the particle cannot have an arbitrary energy, but it can have 

only discrete energy values corresponding to n = 1, 2, 3 ... are the Eigen values. 

According to equation (11) if n = 0, n = 0, which means that the particle doesn’t present inside 

the box, which is not true. The value of En= 0 for n = 0 is not acceptable. Hence the lowest 

allowed energy corresponding to n = 1 is called the ‘zero-point energy or ground state energy’. 

Thus zero-point or ground state of energy of the particle in an infinite potential well is given by, 

2

2

1
8mL

h
E   

The energy states corresponding to n >1 are called excited states. 

Normalization: 

To evaluate A in Eigen function n, one has to perform the normalization of the wave function. 

The allowed solutions of the Schrödinger equation are the Eigen functions, according to the 

equation. 

 13sin 







 x

L

n
An


  

The complex conjugate of equation (13) is, 

 14sin 







 x

L

n
An


  

To find the value of A, we use the normalization condition. 
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 








  1    .,.
2
dxdxei nn   

In this case, the particle exists only within the box of length (L). The above equation can be 

written as,  

 

L

n dx
0

2
1  

 By substituting the values of n and n
* in the above equation, we get 

1sin
0

22  dxx
L

n
A

L
  








 









 2

2cos1
sin                    1

2
cos1

2

1 2

0

2 A
Adxx

L

n
A

L


  

1
2

cos
2

0 0

2









  xdx

L

n
dx

A
L L

  

1
2

sin
22

0

2



















L

x
L

n

n

L
x

A 


 

  0 = sin2n n, of any valuefor  Here,     1002sin
22

2












 n

n

L
L

A  

L
A

L
A

LA 2
or

2
or        1

2

2
2

  

Thus, by substituting the value of A in equation (13) we get normalized wave functions or Eigen 

function of a particle in one dimensional infinite potential well. 

 15sin
2









 x

L

n

L
n


  

The first three eigen functions 1, 2, 3 together with the probability densities 
2

1 ,
2

2 ,
2

3  

and eigen values E1, E2, E3 are as shown in figure (a), (b) & (c) respectively for n = 1, 2 & 3. 

For n = 1, this is the ground state and the particle is normally found in this state. 

x
L

A 










 sinfunction  Eigen 1

 

Ψ1= 0 for both x = 0 and x = L and Ψ1 has maximum value A for x = L/2                

  At x = 0 and x = L, |1|
2 = 0 it means that the particle does not exist at the walls. 

|1|
2 is maximum at x = L/2, it means that the particle exist at the centre of the well. 

2

2

1
8mL

h
E   

This is the energy eigen energy value for ground sate.  

For first excited state, n = 2  

x
L

A 












2
sin    2

 

 Ψ2 = 0 for x = 0, L/2 and L and Ψ2 reaches maximum value for x = L/4 and 3L/4. 

At x = 0, L/2 and L, |2|
2 = 0 it means that the particle does not exist at 0, L/2 and L. 
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  |2|
2 is maximum at x = L/4 and 3L/4 

Energy Eigen values can be calculated by using equation, 

122

2

2 4EEor         
8

4


mL

h
E  

This is the equation to calculate the energy of the particle in first excited state. 

For second excited state, n = 3 

x
L

A 












3
sin3  

Ψ3 = 0 for x = 0, L/3, 2L/3 and L, and Ψ3 reaches maximum value for x = L/6, L/2 and 5L/6. 

At x = 0, L/3, 2L/3 and L, |3|
2 = 0 it means that the particle does not exist at 0, L/3, 2L/3 and L. 

|3|
2 is maximum at x = L/6, L/2 and 5L/6. 

Energy Eigen values can be calculated by using equation, 

132

2

3 9or         
8

9
EE

mL

h
E   

This is the equation to calculate the energy of the particle in second excited state. 

 

Problems: 

1. Calculate the zero point energy for an electron in a box of width 10Å. 

     ?=Eor E  m,10x10=A10=L  , 0 1

10-
0

Given                    

 
 

eVeVE

J
mL

h
E

mL

hn
Etkw n

376.0
10602.1

10038.6

10038.6
1010101.98

1063.6

8

1=n state groundfor 

8
     ;..

19

20

1

20

21031

234

2

2

1

2

22























  

2. An electron is bound in a one dimensional potential well of width 1Å, but of infinite height. 

Find the energy value for the electron in the ground state. 

      ?=Eor E    , m1x10=A1=L  , 0 1

10-
0

Given  

FunctionsWave

aFig )(
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                   
 

eVeVE

J
mL

h
E

mL

hn
Etkw n

69.37
10602.1

10038.6

10038.6
101101.98

1063.6

8

1=n state groundfor 

8
     ;..

19

18

1

18

21031

234

2

2

1

2

22























  

3. An electron is trapped in a one-dimensional box of length 0.1 nm. Calculate the energy 

required to excite the electron from its ground state to the 2nd excited state.  

?=Eor E , m0.1x10=nm 0.1=L   , 0 1

-9Given  

 
 

 
 

eVEE

eV
mL

h
E

eVeVE

J
mL

h
E

mL

hn
Etkw n

219.339691.3799

219.339
101.0101.98

1063.69

8

9

3=n state excited 2ndfor 

691.37
10602.1

10038.6

10038.6
101.0101.98

1063.6

8

1=n state groundfor 

8
    ;..

13

2931

234

2

2

3

19

18

1

18

2931

234

2

2

1

2

22





































 

       

eVE

eVEEE

528.301

691.37219.339

is, state excited 2nd  the tostate ground its fromelectron   theexcite  torequiredenergy  The

13



  

4. Calculate the lowest energy of the system consisting of three electrons in a one - dimensional 

potential box of length 1Å. 

      ?=Eor E  , m1x10=A 1=L   , 0 1

10-
0

Given  

 
 

eVeVE

J
mL

h
E

mL

hn
Etkw n

07.113
10602.1

108114.1

108114.1
101101.98

1063.6

8

1=nenergy lowest for 

8
   ;..

19

17

1

17

21031

234

2

2

1

2

22
























 

5. An electron is constrained to a one-dimensional box of side 1nm. Calculate the first 3-eigen 

values in electron volt.  
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        ?E   ?,E  ?,=Eor E  , m1x10=nm 1=L   , 320 1

-9 Given  

 
 

eVeVE

J
mL

h
E

mL

hn
Etkw n

376.0
10602.1

10038.6

10038.6
101101.98

1063.6

8

1=n state groundfor      ,
8

   ;..

19

20

1

20

2931

234

2

2

1

2

22

























 

eVEE

eVEE

384.3376.099

504.1376.044

3=n & 2 =n state excited 3rd & 2ndFor 

13

12



  

6. An electron is trapped in one-dimensional infinite potential box of width 0.1nm. Calculate 

its wavelengths and energies corresponding to first two excited states. 

        ?  ?,  ?,E  ?,E  , m0.1x10=nm 0.1=L   , 3232

-9  Given  

 
 

 
 

eVeVE

J
mL

h
E

eVeVE

J
mL

h
E

mL

hn
Etkw n

215.339
10602.1

104354.5

10434.5
101.0101.98

1063.69

8

9

3=n state excited secondfor 

76.150
10602.1

10415.2

10415.2
101.0101.98

1063.64

8

4

2=n state excitedfirst for 

8
   ;..

19

17

3

17

2931

234

2

2

3

19

17

2

17

2931

234

2

2

2

2

22















































 

nmmm

L

nmmL

L

n

L
n

 066.010066.010666.6

3

101.02

3

2

3=n state excited secondFor 

1.0101.0

2

2

2=n state excitedfirst For 

2
      w.k.t;

911

3

9

3

9

2

2




























 

7. An electron is trapped in one-dimensional infinite potential box of width 0.15nm. Calculate 

the amount of energy required to excite an electron from ground state to 3rd excited state.  

?EE E  , m0.15x10=nm 0.15=L   , 23

-9 Given  
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     
 

eVeV
x

E

x
x

mL

h

mL

h

mL

h
EEE

mL

hn
Etkw n

68.5
10602.1

10102.9

10102.9
1015.0101.98

10626.615

8

116

88

4

4=n state excited for third and 1n state groundfor 

8
   ;..

19

19

19

2931

234

2

2

2

2

2

22

23

2

22





























 

8. A quantum particle confined to one dimensional box of width ‘a’ in its first excited state. 

What is the probability of finding the particle over an interval of ‘a/2’ marked 

symmetrically at the centre of the box? 

  Soln. 

 

   

 

 

9. The ground state energy of an electron in an infinite well is 5.6 MeV. If the width of the 

well is doubled, calculate the ground state energy. 

Given data:  ,2?,106.5 6.5 1

3

1 aawidthwhenEawidthwheneVmeVE II    

 

 

meVeV
E

E

E

E

am

h
E

ma

h
E

I

I

I

 4.1104.1
4

106.5

4

4

1

1

2
1

28
&

8

3
3

1
1

2

1

1

2

2

12

2

1













 

10. An electron is trapped in a 1-D potential well of infinite height and of width of 0.1nm. 

Calculate the energy required to excite it from its ground state to fifth excited state. 

Given data: a = 0.1nm = 0.1x10-9m, E = E6-E1 = ?  

x=0 x=a 

n=2 2 
2 

1 
2 

n=1 

 a/2 a/4  3a/4 

x=a/2 

The probability of finding the particle can be obtained 

by  

  
2

-
dxp nn 




   

 

Let a particle be in box of width ‘a’,. let p2 be the probability occupation in the region (a/2 = 3a/4 

- a/4) symmetrically at the centre therefore the probability of finding the particle in this region in 

first excited state is obtained by  

   xdxdxxdxp
aaa

n
a

 22
3a/4

a/4

2
23a/4

a/4

2
23a/4

a/4
22 sin    sin    

     3a/4

a/4

2
22

3a/4

a/4

1
3a/4

a/4

2
2
12

2 sin2- cos2-1 xxdxxp
ax

a
aaa




    

       %505.00- 0a/2a/4sin2- 3a/4sin2a/4-3a/4 
2
112

22
2

22
1

2 
aax

a
ax

a
a

p 





 

The probability of occupation in the region a/2 at the centre of the box in the 1st excited state is 

50%. 
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2

22

8ma

hn
E     (Note: when n=1 ground state, n-6 for 5th first excited state) 

 
 

6,5

69.3710038.6
101.0101.98

1063.61
    18

2931

2342

1







 





nstateexcitedthFor

eVJEstateGround
 

 
 

eVJE 135710174.2
101.0101.98

1063.66 16

2931

2342

6 



 





 

          eVeVeVEEE  31.131969.37135716   

 

Questions:  

1. Define wave function? Mention its basic properties.  

2. What is a wave function? Explain its physical significance.  

3. Discuss the physical interpretation of wave function?  

4. Discuss about probability and normalisation condition. 

5. Set up time independent Schrödinger’s wave equation. 

6. Derive Time independent Schrodinger wave equation for a particle moving in one 

dimension.  

7. Explain the significance of wave function and set up time independent Schrödinger’s wave 

equation.  

8. Describe Eigen functions and Eigen values. 

9. Derive the expressions for eigen values and eigen functions of a particle in one dimensional 

potential box.  

10. Solve Schrödinger wave equation for allowed energy values in case of a particle in a 

potential box.  

11. Obtain the expression for normalised wave function for a particle in one dimensional 

potential box.  

12. Assuming the time independent Schrödinger’s wave equation, discuss the solution for a 

particle in one dimensional potential well of infinite height, 

13. Discuss and mention the energy eigen values, eigen wave functions and probability 

densities for a particle in 1-dimensional box for atleast 3 states. 

14. Discuss the energies of a free particle using time independent Schrodinger equation. 
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Problems: 

1. An electron is confined to a one dimensional box of width 1 nm. Calculate the first three 

Eigen values in eV. 

2. An electron is bound in a one dimensional box of width 4 X 10-10 m. compute the energy 

and de-Broglie wavelength of ground and first excited states. 

3. Find the energy of an electron in the ground state, when it is trapped in an infinite potential 

well of width 2Å. 

4. An electron is bound in one dimensional potential well of width 1Å but of infinite height. 

Find its energy values in ground state and first two exited states. 

5. Estimate the time spent by an atom in the excited state during the excitation and de-excitation 

processes, when a spectral line of wavelength 546 nm and width 10−14 m is emitted.  

6. An electron is confined to a box of length 10−9 m, calculate the minimum uncertainty in its 

velocity. 

7. The position and momentum of 1 keV electron are simultaneously determined. If it position is 

located within 1Å, find the uncertainty in the determination of its momentum.  

8. A spectral line of wavelength 4000 Å has a width of 8 × 10−5Å. Evaluate the minimum time 

spent by the electrons in the upper energy state between the excitation and de-excitation 

processes.  

9. The inherent uncertainty in the measurement of time spent by Iridium 191 nuclei in the 

excited state is found to be 1.4×10−10s. Estimate the uncertainty that results in its energy in 

eV in the excited state.  

10. An electron is bound in one dimensional potential well of width 0.18 nm. Find the energy 

value in eV of the second excited state.  

11. The first excited state energy of an electron in an in�finite well is 240 eV. What will be its 

ground state energy when the width of the potential well is doubled?  

12. A quantum particle confined to one–dimensional box of width ‘a’ is in its first excited state. 

What is the probability of finding the particle over an interval of a/2 marked symmetrically 

at the center of the box. 
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Free Particle 

Energy Eigen values for a free particle: 

Free particle means, it is not under the influence of any kind of field or force. Thus it has zero 

potential, i.e., V = 0. 

Hence Schrödinger’s equation becomes, 

0)(
8

2

2

2

2

 


VE
h

m

dx

d
 

Since V = 0,          0
8

2

2

2
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 
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h

m

dx

d
 

The above equation holds good for a particle for which the potential v=0 over the entire space 

(No boundaries at all). 

We know that in the case of particle in an infinite potential well, the condition V=0 holds good 

only over a infinite width ‘L’ and outside region, V= , 

Since for the free particle, V = 0 holds good everywhere, we can extend the case of particle in an 

infinite potential well to the free particle’s case, by treating the width of the well to be infinity, 

i.e., by allowing L = , 

We have the equation for energy Eigen values for a particle in an infinite potential well as,  

2

22

8mL

hn
E   

                                     Where, n = 1, 2, 3, . . . . . 

Rearranging the above equation, we have, 

Em
h

L
n 2

2
  

Here, we see that for a particle with constant energy E but confined in the well, n depends 

mainly on ‘L’. Hence as L→ , n→. If the particle is no more confined in any sort of well but 

free, at that time it also follows that n = , which essentially means that a free particle can have 

any energy i.e., the energy Eigen values or the possible values of energy are infinite in number. 

Keeping the energy level representation in the mind, we say that the permitted energy values are 

continues. All these mean, there is no discreteness in the allowed energy values. In other word, 

there is no quantization of energy in case of a free particle and the problem is dealt in classical 

mechanics. Thus a free particle is a classical entity. 

https://www.youtube.com/watch?v=tlM9vq-bepA 

https://www.youtube.com/watch?v=v9DPzMoWpc0 

https://www.youtube.com/watch?v=8l4x4vbMP0c 

 

https://www.youtube.com/watch?v=tlM9vq-bepA
https://www.youtube.com/watch?v=v9DPzMoWpc0
https://www.youtube.com/watch?v=8l4x4vbMP0c
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   Electrical Conductivity in Metals 
 

Introduction: 

Materials can be classified into three types based on the conductivity of heat and electricity. 

They are; 

1. Conductors  (Example : Metals – Copper, Aluminum, Silver, Gold) 

2. Semiconductors (Example : Germanium, Silicon) 

3. Insulators ( Example : Wood, Mica, Glass) 

Electron Theory of Metals 
The electron theory of metals explains the following: 

 Structural, electrical and thermal properties of materials. 

 Elasticity, cohesive force and binding in solids. 

 Behaviour of conductors, semiconductors, insulators etc., 

In solids, electrons in the outermost orbit of atoms are called valance electrons, which 

determine the properties of the materials. The electron theory is applicable to all solids (both 

metals and non-metals). This theory explains the electrical, thermal and magnetic properties of 

solids. 

Quantum Free Electron Theory (Summerfeld Theory): 

To overcome the drawbacks of classical free electron theory, Sommerfeld proposed quantum 

free electron theory. He treated electron as a quantum particle. He retains the vital features of 

classical free electron theory and included the Pauli Exclusion Principle & Fermi-Dirac 

statistics. The following are the assumptions of quantum free electron theory. 

1. The free electrons in a metal can have only discrete energy values. Thus the energies 

are quantized. 

2. The electrons obey Pauli’s Exclusion Principle, which states that there cannot be more 

than two electrons in any energy level. 

3. The distribution of electrons in various energy levels obeys the Fermi-Dirac quantum 

statistics. 

4.  Free electrons have the same potential energy everywhere within the metal, because 

the potential due to ionic cores is uniform throughout the metal. 

5. The force of attraction between electrons & lattice ions and the force of repulsion 

between electrons can be neglected. 

6. Electrons are treated as wave-like particles. 

Fermi - level, Fermi - energy and Fermi - factor 

As we know that for a metal containing N atoms, there will be N number of energy levels in 

each band. According to Pauli’s exclusion principle, each energy level can accommodate a 

maximum of two electrons, one with spin up (+½) and the other with spin down (-½). At 

absolute zero temperature, two electrons with opposite spins will occupy the lowest available 

energy level. The next two electrons with opposite spins will occupy the next energy level and 

so on. Thus, the top most energy level occupied by electrons at absolute zero temperature is 

called Fermi-energy level. The energy corresponding to that energy level is called Fermi-

energy.  
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The energy of the highest occupied level at zero-degree absolute is called Fermi energy, and 

the energy level is referred to as the Fermi level. The Fermi energy is denoted as EF. 

All energy levels below Fermi level are completely filled and above which all energy levels are 

completely empty.  

 

 

 

 

 

At temperatures above absolute zero, the electrons get thermally excited and move up to higher 

energy levels. As a result, there will be many vacant energy levels below as well as above 

Fermi energy level. Under thermal equilibrium, the distribution of electrons among various 

energy levels is given by statistical function f(E). The function f(E) is called Fermi-factor and 

this gives the probability of occupation of a given energy level under thermal equilibrium. The 

expression for f(E) is given by 

       
1

1




 kTEE Fe
Ef  

Where f(E) is called Fermi-Dirac distribution function of Fermi factor, EF is the Fermi energy, 

k is the Boltzmann constant and T is the temperature of metal under thermal equilibrium. 

Note: 1. The Fermi-Dirac distribution f(E) is used to calculate the probability of an electron               

occupying a certain energy level. 

          2. The distribution of electrons among the different energy levels as a function of                

temperature is known as Fermi-Dirac distribution function. 

 

Variation of Fermi factor with Energy and Temperature 

Let us consider the different cases by considering the Fermi factor equation 

   
1

1




 kTEE Fe
Ef  

Case (i) :  f(E) for E < EF at T = 0 K; 

When;  E < EF & T = 0 K, from the probability function f(E) we have  

     1
10

1

1

1








e
Ef  

i.e., f(E) = 1 for E < EF at T = 0 K. 

EF 
E

n
er

g
y

 

T = 0 K 
Vacant energy levels 

Fermi Energy 
Filled energy levels 
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This implies that at absolute zero temperature, all the energy levels below EF are 100% 

occupied which is true from the definition of Fermi energy. 

Case (ii) :  f(E) for E > EF at T = 0 K; 

When E > EF  & T = 0 K, then  f(E) becomes  

    0
1

1

1

1

1











e
Ef  

i.e., f(E) = 0  for E > EF at T = 0 K. 

This implies that at absolute zero temperature, all the energy levels above EF are unoccupied 

(completely empty) which is true from the definition of Fermi energy. 

Case (iii) :  f(E) for E = EF at T = 0 K; 

When E = EF  & T = 0 K, then  f(E) becomes  

    ateIndetermin
1

1
0

0 



e

Ef  

i.e., f(E) =   for E = EF at T = 0 K. 

Hence, the occupation of Fermi level at T = 0 K has an undetermined value ranging between 

zero and unity (0 & 1). The Fermi-Dirac distribution function is discontinuous at E = EF for    

T = 0 K. 

Case (iv) :- f(E) for E = EF at T > 0 K; 

When E = EF  & T > 0 K, then  f(E) becomes  

   
2

1

11

1

1

1
0








e

Ef  

i.e., f(E) = ½  for E = EF at T > 0 K. 

If  E « EF, the probability starts decreasing from 1 and reaches 0.5 (½) at E = EF and for           

E > EF, it further falls off as shown in figure. In conclusion, the Fermi energy is the most 

probable or average energy of the electrons in a solid. 

The variation of Fermi factor with energy and temperature is as shown in figure given below. 
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Importance of Fermi Energy 

 Fermi energy level is used to separate the vacant and filled states at 0 K. 

 It is used to know the status of the electrons. 

 Electrons are completely filled below the Fermi energy level and completely empty above 

the Fermi level at 0 K. 

 Above 0 K some electrons absorb thermal energy and they jump to the higher energy 

levels. 

Expressions for electrical conductivity and resistivity as per quantum free 

electron theory. 






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

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
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


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m
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ne
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Where  is the electrical conductivity of the metal 

            n is the number of free electrons per unit volume 

       m* is the effective mass of an electron 

        is the mean free path of electron 

       vF is the Fermi velocity of electron 

        is the resistivity of the metal 

Merits or Success of Quantum free electron theory: 

The quantum free electron theory solves the flaws of the classical free electron theory which 

are discussed below. 

1. Specific heat of free electrons: According to quantum free electron theory, the electrons 

occupying energy levels close to EF can absorb heat energy. Such electrons constitute a 

very small percentage of the total number of free electrons. Hence the specific heat of free 

electrons is given by  

 RT
E

k
C

F

V

2
  

Since the value of EF ranges from 1 to 10 eV, by taking a typical value of EF = 5 eV, we get 

 410
2 

FE

k
 

 RTCV

410  

which is in agrees well with the experimental results. 

2. Temperature dependence of resistivity or conductivity in metals: According to 

quantum free electron theory, the expressions for electrical conductivity & resistivity of a 

metal are given by 

 




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In the above expression only the mean free path  is the temperature dependent quantity.  
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)1(   

In classical theory, the collision was seen as a particle bouncing off another. In the quantum 

understanding, an electron is viewed as a wave travelling through the medium. If r represents 

the amplitude of the oscillation of the lattice ions can be considered to present a circular cross 

section of area r2 that blocks the path of the electron waves. Hence electron waves are 

scattered more effectively results in a reduction of mean free path (Thusis inversely 

proportional to the area of cross section.  

i.e.,  )2(
1

2


r
  

But the area of cross section r2 is directly proportional to the absolute temperature. 

T
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This is exactly same as the experimental prediction. Thus quantum free electron theory 

properly explains the dependence of   on T. 

 

3. Dependence of electrical conductivity on electron concentration: According to quantum 

free electro theory, the electrical conductivity in metals is given by 

   







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

Fvm

ne 


2

   

From the above equation it is clear that the electrical conductivity depends on both the 

electron concentration n and 










Fv


 .  

 If we compare the cases of copper and aluminium, the value of n for aluminium is 2.13 

times higher than that of copper. But the value of /vF for copper is about 3.73 times higher 

than that of aluminium. Thus the conductivity of copper is more than that of aluminium. 

Problems :  

1. The free electron density of aluminium is 18.10x1028 m-3. Calculate its Fermi energy at      

0 K. Planck’s constant and mass of free electron are 6.626x10-34 Js and 9.1x10-31 kg. 

Solns. 

n = 18.10x1028 m-3 

Planck’s constant, h = 6.626x10-34 Js 

Mass of an electron, m = 9.11x10-31 kg 
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2. Calculate the density of states for copper at the Fermi level for T = 0 K. Given that, 

electron density of copper is 8.5x1028 electrons /m3. 

Solns. 

n = 8.5x1028 m-3 

Planck’s constant, h = 6.626x10-34 Js 

Mass of an electron, m = 9.1x10-31 kg 

  

  

    

 

 

3. Find the probability of an electron occupying an energy level 0.02 eV above the Fermi 

level at 200 K and 400 K in a material. 

Solns. 

E - EF = 0.02 eV = 0.02x1.602x10-19 J = 3.204 x10-21 J 

T1 = 200 K & T2 = 400 K 

 

 

 

 

4. Show that the sum of the probability of occupancy of an energy state at E above the 

Fermi level and that at E below the Fermi level is unity. 

Solns.     
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5. Calculate the probability of an electron occupying an energy level of 0.05 eV at 200 K 

above and below the Fermi level.  
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5001038.1

x100.05x1.602

-19

FF

23

19-

23

19-





































































b

E

a

E

xx

b

E

kTE

b

E

xx

a

E

EfEf

e
e

Ef

e
Ef

e
e

Ef

 

6. Find the temperature at which there is 1 % probability that a state with 0.5 eV energy above 

the Fermi energy is occupied. 
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 

   

K
T

ee

ee

or

ee

or
e

EfTKW

Ef

TT

TxTx

TxTx

kTEE F

1263
4.595

5804
Tor     595.4)99ln(

5804
                

991100or       100
01.0

1
1                  

1

1

1

1
01.0                  

1

1

1

1
01.0                         

1

1
            ..

?T

 0.01  % 1

     J100.5x1.602xeV 5.0EE

Soln.

58045804

5804

1038.1

100.5x1.602x

5804

1038.1

100.5x1.602x

19-

F

23

19-

23

19-

































































































 

7. The Fermi level in potassium is 2.1 eV. What are the energies for which the probability of 

occupancy at 300 K are 0.99, 0.01 and 0.5? 

        

 

  0.5Effor  ?  E  Find, &

0.01Effor  ?  E  Find,

 0.99Effor  ?  E  Find,

    eV 2.1E potassiumFor 

Soln.

33

22

11

F









 

          

   
 

eV

x

xx

Ef

slly

eV

x

xx

Ef

slly

eV

x

xx

Ef

EfEfkT

EE

Ef
e

e
EfTKW

F

kTEE

kTEE
F

F

1.201.2)0(x02584.01.2

1
5.0

1
ln

10602.1

3001038.1
1.21

)(

1
lnkTEE

bygiven   is  )f(Efor    E    

2187.21187.01.2)5950.4x(02584.01.2

1
01.0

1
ln

10602.1

3001038.1
1.21

)(

1
lnkTEE

bygiven   is  )f(Efor    E    

9813.11187.01.2)5950.4(x02584.01.2

1
99.0

1
ln

10602.1

3001038.1
1.21

)(

1
lnkTEE

bygiven   is  )f(Efor    E

1
)(

1
lnkTEEor           1

)(

1
ln

get,  wesides,both on  logarithm natural Taking

1
)(

1
or        

1

1
            ..

19

23

3

F3

33

19

23

2

F2

22

19

23

1

F1

11

F











































































































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8. Calculate the Fermi energy in eV for a metal at 0 K, whose density is 10500 kgm -3, atomic 

weight is 107.9 and it has one conduction electron per atom. 

Solns. 

Density of metal, = 10500 kgm-3 

Atomic weight of metal, wt. = 107.9  

Fermi energy, EF = ? 

We know that the concentration of electrons in metal, n is given by 

 

eV
x

x
Jx

xx

xx

x
n

m

h
E

mx

F

51.5
10602.1

108173.8
108173.8

10816.53

1011.98

)1060626(3

8

10861.5
107.9

1x  60022x10x    05001

(wt.) weight atomic

atomper  electrons free of no.x    )costant(N sAvogadro'x    )density(
n

19

18
18

3/2
28

31

234
3/2

3/22

328
26

A

0

























































 

 

REVIEW QUESTIONS 

Long Answer Questions: 

1. Define the terms: Fermi-level, Fermi-energy and Fermi-factor.  

2. Mention the drawback/Failures of classical free electron theory and explain them. 

3. What are the assumptions of quantum free electron theory? 

4. Define the terms: Fermi-temperature, Fermi-velocity and density of states. 

5. What are the successes of quantum free electron theory? Explain. 

6. How quantum free electron theory successfully explain the failures of classical free 

electron theory. 

7. What are the merits of quantum free electron theory? Explain.  

8. Write down the Fermi-Dirac equation for the probability of occupation of an energy level E 

by an electron. Show that the probability of its occupancy by an electron is zero if E > EF 

and unity if E < EF at temperature 0 K. 

9. Define Fermi factor. Explain Fermi Dirac distribution for electrons in a metal at 

temperature T = 0 K and T > 0 K. 

10. Write an expression for the Fermi energy distribution function f(E) and discuss its behavior 

with change in temperature. Plot f(E) versus E for T = 0 K, and T > 0 K. 

11. Explain the dependence of electrical conductivity on temperature and electron 

concentration on the basis of classical free electron theory. 

12. Write down the difference between classical and quantum free electron theories. 
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Problems: 

1. Obtain the value of f(E) for E - EF = 0.01 eV at T = 300 K. 

2. Find the probability that an energy level at 0.2 eV below Fermi level being occupied at 

temperatures 300 K and 900 K. 

3. At what temperature can we expect a 10% probability that electron in silver have an energy 

which 1% above the Fermi energy? The Fermi energy of silver is 5.5 eV. 

4. Evaluate the Fermi function for an energy 0.04 eV at T= 330 K above the Fermi energy. 

5. Show that the probability of occupation above the fermi level is same as the non-

occupation probability below the fermi level for given energy and temperature. 

 

* * * * END * * * * 
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DIELECTRICS 

Introduction: 

Dielectrics are insulating or non-conducting materials and are used in many applications such 

as capacitors, memories, sensors and actuators. Dielectrics are insulating materials they exhibit 

the property of electrical polarization. In principle all dielectrics are insulators but all insulators 

are not dielectrics. Although these materials do not conduct electrical current when an electric 

field is applied, but the field may cause a slight shift in the balance of charge within the 

material to form an electric dipole. 

1. Dielectrics are the substances which do not possess free electric charges under ordinary 

circumstances. e.g., glass, mica, plastic etc., 

2. Dielectric materials are those which have attaining polarization when electric field is 

applied. 

3. A dielectric is mainly characterized by its dielectric constant.   

Dielectric constant (εr or K) 

The dielectric constant of a material is defined as the ratio of the permittivity of the medium (ε) 

to the permittivity of free space (εo). It can also be defined as the ratio of the capacitance of a 

capacitor with dielectric (C) to the capacitance of the same capacitor with air (C0). 

o

r

o

r
C

C
ei  




 or                  .,.  

oo C

C
KKei  or                 .,.




 

Where 
r is called dielectric constant or relative permittivity (ability of the material to store 

electric charges). 

Electric dipole and Dipole moment: 

 A pair of equal and opposite charges separated by a very small distance is called an 

electric dipole. 

 
 The product of the magnitude of either of the charges and the distance of their 

separation is called the dipole moment 

lqei 2x    .,.   

Types of dielectrics: 

Dielectrics are mainly divided into two groups, namely Polar and Non polar dielectrics.  

Polar dielectrics: The molecules in which the center of gravity of positive charges is separated 

from the center of gravity of negative charges by a finite distance are called polar molecules.  

Polar dielectric materials possess permanent electric dipoles in the material and are oriented in 

random directions so that the net dipole moment of the material is zero in the absence of 

applied electric field. If polar dielectric materials are placed in the external electric field then 

all dipoles tend to align in the field direction and hence net dipole moment develops cross 

dielectric material. 

Materials like KI, HCl, CO, H2O, NH3 etc., are the examples for polar dielectrics. 
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Non-Polar dielectrics: The molecule in which the center of gravity of positive charges 

(protons) coincides with center of gravity of negative charges (electrons), then the molecule is 

known as nonpolar molecules.  

Non polar dielectric materials do not possess permanent electric dipoles. Thus the net dipole 

moment across the material is zero in the absence of external electric field. In non-polar 

dielectric materials dipoles are induced due to the applied electric field which results in the net 

dipole moment in the dielectric material in the direction of the applied field. 

Elementary gasses like 𝐻𝑒, He, Ne, Ar & Xe and 𝐻2, N2, Cl2 etc., are the examples for non-

polar dielectrics. 

Polarization: In the absence of external electric field, dipoles are randomly oriented within the 

dielectric and the net dipole moment is zero. When an electric field is applied to a dielectric 

slab, all the dipoles are oriented in the direction of the field and hence the dipole moment 

increases.  This is known as polarization. 

Polarization is defined as the net dipole moment per unit volume.  

      
v

       .,.


Pei  

Dielectric Polarization: The displacement of charges in the molecules of a dielectric under the 

action of applied electric field, leading to the development of dipole moment is called 

dielectric polarization or electrical polarization. 

Polarization is directly proportional to the applied electric field and the number of molecules 

per unit volume. 

 or          

    or          .,.

αNE PNEpand

EPEPei



 
 

Where α is known as polarizability. It is defined as the ratio of polarization to the applied 

electric field 

E
      .,.

P
ei   

We also know that, the flux density in the absence of dielectric is given by  

ED 0  

And the flux density in the presence of dielectric is given by  

ED r0  

By using the above equations, we can also show that, 

 Ep r 10    

Where P is polarization, 
r  is dielectric constant and mF /10854.8 12

0

  is the permittivity 

of free space. 

Types of Polarization: There are four types of polarization, namely 

(1) Electronic Polarization (Pe)  

(2) Ionic Polarization (Pe)  

(3) Orientation Polarization (Po)  

(4) Space charge Polarization (Ps)  
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(1) Electronic Polarization:  

 

 

 

 

 

This polarization involves the separation of the center of the electron cloud around an 

atom with respect to the center of its nucleus in dielectric material under the application of 

electric field. Hence dipoles are induced within the material. This leads to the development of 

net dipole moment in the material and is the vector sum of dipole moments of individual 

dipoles. 

It is independent of the temperate. 

The expression for electronic polarizability is given by 

3

0
0 4

N

)1(
Rπεr

e 





  

where N is the number of free electrons per unit volume. 

(2) Ionic Polarization: 

 

 

 

 

 

 

This polarization occurs in ionic solids such as sodium chloride etc., Ionic solids 

possess net dipole moment even in the absence of external electric field. But when the external 

electric field is applied the separation between the ions further increases. Hence the net dipole 

moment of the material also increases. 

The Ionic polarization occurs in ionic molecules such as HCl, NaCl, etc., It is also 

temperature independent quantity. 

The expression for ionic polarizability is given by 

e
e

i α
nE

P
α

10

1
  

(3) Orientation Polarization: 

 

 

 

 

 

 

 

This polarization occurs in polar dielectric material, which possesses permanent electric 

dipoles. In polar dielectrics the dipoles are randomly oriented due thermal agitation. Therefore, 

net dipole moment of the material is zero. But when the external electric field is applied all 

E = 0                            E > 0 

-  

E = 0                             E > 0 

E = 0                         E > 0 
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dipoles tend to align in the field direction. Therefore, dipole moment develops across the 

material. This is referred to as orientation polarization.  

It is dependent on temperature. i.e., it is inversely proportional to the temperature. 

The expression for orientation polarizability is given by 

kT
αo

3

2
  

(4) Space Charge Polarization: 

 

 

 

 

 

 

This polarization involves limited movement of charges resulting in alignment of 

charge dipoles under applied field. This occurs in multiphase dielectric materials in which 

there is a change of resistivity between different phases. This usually happens at the grain 

boundaries or lattice defects and localized charge is set up. Since this is very small it can be 

neglected. 

Internal fields in Dielectrics 

Internal field - Definition: 

When a dielectric material is placed in the external electric field, polarization occurs. 

Hence the net electric field at any point within the dielectric material is given by the sum of 

external field and the field due to all dipoles surrounding that point. This net field is called 

internal field or Local field.  

 

Expression for Internal field in case of one dimension  

 
Consider a dielectric material placed in the external electric field 𝐸. Consider an array 

of dipoles in the polarized dielectric material as shown in the figure. Let 𝑎 be the distance 

between two successive dipoles in the array. 

The internal field at a dipole ‘X’ due to all dipoles in the array is given by  

(1)           
2.1

3

0


a

EEi



 

where μ is the dipole moment, ε0 is the permittivity of free space and 𝑎 is the inter dipole 

distance in the array. 

(2)          
2.1

3

0


a

E
EEi




 

E = 0                      E > 0 
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here 𝛼 is polarizability. Since 𝛼, 𝜖0 and 𝑎 are positive quantities the local field 𝐸𝑖 > 𝐸. 

Expression for Internal field in case of three dimensional array of atoms - Lorentz Field 

For three dimension 
3

1

a
 could be replaced with number of dipoles per unit volume 𝑁 and 



2.1
 

could be replaced with 𝛾 in equation (2), we get 

(3)          
0




 EN
EEi  

(4)          
0




P
EEi  

Here the polarization 𝑃 = 𝑁𝛼𝐸. 

For an elemental solid dielectric material 𝛾 = 1/3, Thus equation (4) becomes  

(5)          
3 0




P
EEL  

Here Ei = EL and hence the above equation is the expression for Lorentz field.  

Derivation of Clausius - Mossotti equation:  

Consider an Elemental solid dielectric material. Since it doesn’t possess permanent 

dipoles, for such material, the ionic and orientation polarizabilities are zero. Hence the 

polarization 𝑃 is given by 

 

(1)           LeENP   

When we substitute the value of  
3 0

P
EEL  in the above equation (1) we get, 

(2)          
3 0














P
ENP e  

Again substitute the value of EP r )1(0   in the above equation, then 

 
 

  
3

1
1

0

0
0 







 







E
ENE r

er  

 
 

  
3

1
10 







 


E
ENE r

er


  

 
 

  
3

1
110 







 
 r

er ENE


  

 
 

  
3

13
10 







 
 r

er N


  

 
 

  
3

2
1

0





 r

er N  

 
 

(3)           
2

1

3 0







r

reN








 

Equation (3) is called Clausius-Mossotti relation or equation. 
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Solid, liquid and gaseous dielectrics: 

Two most important applications of dielectric materials are as insulation material and 

as medium in capacitors. For insulation materials application the dielectric is required to have 

low dielectric constant, low dielectric loss, high resistance and high dielectric strength. 

Solid insulating materials: - Polymers and ceramics are the widely used Solid 

insulators. A variety of plastics, rubbers, waxes, paper, synthetic fibers and fabrics are applied 

in the form of films, sheets, slabs, tapes, sleeving, tubing, rods and mouldings. 

Liquid insulating materials: - Liquid insulating materials are mainly mineral oils and 

synthetic oils, which are used for the purpose of insulation as well as cooling in transformers.  

Gaseous insulating materials: - Gases are good insulators and work well as heat 

transferring media. E.g., air, nitrogen, inert gases, hydrogen, CO2, etc. 

Application of dielectrics in transformers: - A transformer is a device used for 

transmitting power from one circuit to another or from one place to another place. It consists of 

two windings, primary and secondary windings, linked by a common magnetic flux. During 

the construction of transformers, the windings are filled (or saturated) by varnishes. In case of 

H.V. transformers used in distribution of power where very high voltages are present, proper  

provisions are to be provided to distribute away the heat produced and to provide high 

dielectric strength. These transformers are usually immersed in liquid dielectrics. 

Mineral oil transfers heat from the transformers windings and core to the outer shield 

and enables dissipation of the heat generated. Nowadays, synthetic oils are being used in place 

of mineral oils because synthetic oils are much more resistant to oxidation and fire hazards. 

Petroleum oils, silicone oils and vegetable oils are having high thermal stability. They 

are mainly used as filling medium for transformers, circuit breakers etc. 

 

Problems:  

1) Find the polarization produced in a dielectric medium of relative permittivity 15 in 

presence of an electric field of 500 V/m. 

Soln.: p=?, 15r , E=500 v/m 

 

 
28

12

0

10198.6

50011510854.8

1











CmP

P

EP r

 

2) The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic 

polarizabilty of He atoms if the gas contains 2.7x1025 atoms/m3. 

Soln. : 0000684.1r , e =?,  N = 2.7x1025 atoms/m3. 
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 
 

 
 

241

25

12

0

0

10243.2

20000684.1107.2

10000684.110854.83

2

13
  or                     

32

1

Fm

N

N

e

e

r

r
e

e

r

r






































 

 

(3) The dielectric constant of sulphur is 3.4 assuming a cubic lattice for its structure, 

calculate the dielectric constant of sulphur. Given density = 2.07 gm/cc and atomic 

weight = 32.07. 

Soln.: 4.3r , 
e = ?, D = 2.07 gm/cc = 2.07x103 kg/m3, A = 32.07 

 
 

 
 

240

326

12

0

0

0

10035.3

24.31007.210025.6

14.307.3210854.83

2

13

32

1

.

32

1

Fm

DN

A

A

DN

A

DNelectronfreeofno
N

and

N

e

e

rA

r
e

eA

r

r

A

e

r

r


























































 

4) An elemental solid dielectric material has polarizability
240107 Fme

 . Assuming 
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Numerical Problems: 

1. Determine the polarization produced in a crystal by an electric field of strength 6000 V/cm if it has a 

dielectric constant of 5. Ans. 2.124×10−5 𝐶𝑚−2 

2. Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an 

electric field of 500 V/m.   

2. Calculate the dielectric constant of NaCl crystal if the polarization developed is 4.3×10−8 when 

subjected to electric field of 2000 𝑉𝑚−1. Ans. 3.428. 

3. An elemental solid dielectric material has polarizability 7×10−40 𝐹𝑚−2. Assuming the internal field to 

be Lorentz, calculate the dielectric constant for the material if the material has 3×1028 𝑎𝑡𝑜𝑚𝑠 /𝑚3. 

Ans. 12.33. 

4. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the 

electronic polarizability of sulphur. Given: for sulphur density = 2.07 gm/cc, and atomic weight 

32.07. Ans. 𝛼𝑒 = 3.035 × 10−40 𝐹𝑚2. 

5. The atomic weight and density of sulphur are 32 and 2.08×103 𝑘𝑔/𝑚3. The electronic polarizability of 

the atom is 3.28×10−40𝐹/𝑚2. If Sulphur solid has a cubic structure, calculate its dielectric constant. 

Ans. 3.873. 

6. A solid contains 5×1028 𝑎𝑡𝑜𝑚𝑠 / 𝑚3 each with a polarizability of 2×10-40 𝐹𝑚-2. Assuming that the 

internal field is given by Lorentz formula. Calculate the ratio of internal field to the external field. 

Given 𝜖0 = 8.854×10-12 𝐹𝑚-1. 

Review Questions: 

1. Define the terms electric dipole moment, dielectric constant and Electric polarization. 

2. Define dipole, dipole moment and define dielectric constant. 

3. What are Polar and Non polar dielectrics? Explain with examples. 

4. Derive relation between polarization, electric susceptibility and dielectric constant. 

5. Define polarization of a dielectric material and mention the types of polarizations. 

6. Describe in brief the various types of polarization mechanisms. 

7. What is internal field? Write an expression for internal field in case of one-dimensional and 

three dimensional array of atoms in dielectric solids. 

8. Derive Clausius-Mossoti equation. 

9. What are dielectrics? Explain electronic and ionic polarization. Give an example for each. 

10. What are dielectrics? Explain ionic and orientation polarization. Give an example for each. 
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Superconductivity: 

Introduction: Lord Kamerlingh Onnes discovered the phenomenon of superconductivity in 

the year 1911. When he was studying the temperature dependence of resistance of Mercury at 

very low temperature he found that resistance of Mercury decreases in temperature up to a 

particular temperature Tc = 4.15 K and below this temperature the resistance of mercury 

abruptly drops to zero. Between 4.15K and 0K Mercury offered no resistance for the flow of 

electric current. This phenomenon is reversible and material becomes normal when once again 

temperature was increased above 4.15 K. This phenomenon is called superconductivity and 

material which exhibits this property is named as superconductor.  

Definition: Superconductivity is defined as “The phenomenon in which resistance of certain 

metals, alloys and compounds drops to zero abruptly, below certain temperature is called 

superconductivity. 

Variation of Resistivity with Temperature: The variation of the resistivity of a 

superconductor, pure and impure metals with temperature is as shown in the figure below.  

  
Critical Temperature: The temperature, below which materials exhibit superconducting 

property is called critical temperature, denoted by TC. It is different for different substances. 

The materials, which exhibit superconducting property, are called superconductors. Above 

critical temperature material is said to be in normal state and offers resistance for the flow of 

electric current. Below critical temperature material is said to be in superconducting state. Thus 

TC is also called as transition temperature. 

Meissner’s Effect 
In 1933, Meissner and Ochsenfeld showed that when a superconducting material is placed in a 

magnetic field it allows magnetic lines of force to pass through, if its temperature is above TC. 

If the temperature is reduced below the critical temperature TC, then it expels all the flux lines 

completely out of the specimen and exhibits perfect diamagnetism. This is known as 

Meissner’s effect. Since superconductor exhibits perfect diamagnetism below the critical 

temperature Tc, magnetic flux density inside the material is zero. 
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The expression for magnetic flux density is given by B = 0 (M + H)  

Here B is Magnetic Flux Density, M is Magnetization and H is the applied magnetic field 

strength. For a superconductor, B = 0 at T < TC.  

Thus we get M = − H.  

Thus Meissner’s Effect signifies the negative magnetic moment associated with 

superconductors.  

Critical Field and its Temperature Dependence 

Critical field We know that when superconductor is placed in a magnetic field it expels 

magnetic flux lines completely out of the body and exhibits a perfect diamagnetism. But if the 

strength of the magnetic field is further increased, it is found that for a particular value of the 

magnetic field, 

material looses its superconducting property and becomes a normal conductor. The value of the 

magnetic field at which the transition occurs from the Superconducting state to Normal 

Conducting state is called Critical Field or Critical Magnetic Field and is denoted by HC. It is 

found that by reducing the temperature of the material further superconducting property of the 

material could be restored. Thus, critical field does not destroy the superconducting property of 

the material completely but only reduces the critical temperature of the material.  

The variation of Critical field with temperature below the critical temperature is given by 













2

2

0 1
C

C
T

T
HH  

Here HC is the Critical field at any temperature T less than TC, H0 is the Critical field at T = 0 

K. 
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Types of Superconductors 

Superconductors are classified into two types  

1. Type - I Superconductor or Soft Superconductor 

2. Type - II Superconductor or Hard Superconductor 

Type - I Superconductors: 

Type I superconductors exhibit complete Meissener’s Effect and possess a single value of 

critical field. The graph of magnetic moment Vs magnetic field is as shown in the Fig. below. 

As the field strength increases the material becomes more and more diamagnetic until H 

becomes equal to HC. Above HC the material allows the flux lines to pass through and exhibits 

normal conductivity. The value of HC is very small for soft superconductors. Therefore, soft 

superconductors cannot withstand high magnetic fields. Therefore, they cannot be used for 

making superconducting magnets. Ex. Hg, Pb and Zn.  

 

  

 

 

 

 

 

 

 

 

 

Type - II Superconductors: 

paragraph Superconducting materials, which can withstand high value of critical magnetic 

fields, are called Hard Superconductors. 

 
The graph of magnetic moment Vs magnetic field is as shown in the Fig. Hard 

superconductors are characterized by two critical fields HC1 and HC2. When applied magnetic 

field is less than HC1 material exhibits perfect diamagnetism. Beyond HC1 partial flux 

penetrates and the material is said to be Vortex State. Thus flux penetration occurs through 
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small-channelized regions called filaments. As the strength of the field increases further, more 

and more flux fills the body and thereby decreasing the diamagnetic property of the material. 

At HC2 flux fills the body completely and material losses its diamagnetic property as well as 

superconducting property completely. 

 
The value of HC2 is hundreds of times greater than HC of soft superconductors. Therefore, they 

are used for making powerful superconducting magnets. Ex. : NbTi,  Nb3Sn. 

 

 

Difference between Type - 1 and Type -2 Superconductors 

Type - 1 Superconductor Type -2 Superconductor 

1. They exhibit complete Meissner effect 1. They exhibit partial Meissner effect 

2. These are perfect diamagnetics 2. These are not perfect diamagnetics 

3. These are known as soft superconductors 3. These are known as hard superconductors 

4. They have only one critical magnetic field 4. They have two critical magnetic fields 

5. No vertex (Mixed) state is present 5. Vertex (mixed) state is present 

6. These materials undergoes a sharp transition 

at the critical magnetic field 

6. These materials undergoes a gradual transition 

between two critical magnetic fields 

7.  The highest value of critical magnetic field 

is 0.1 wb/m2 

7.  The upper critical magnetic field is of the 50 

wb/m2 

8. Critical temperature is low (< 10 K) 8. Critical temperature is high (> 10 K) 

9. Applications are very limited 9. They are used to generate very high magnetic 

field. 

10. Examples:- lead, tin, mercury , etc. 10. Examples:- alloys like Nb-Sn, Nb-Ti, Nb-Zr, etc. 

BCS Theory of Superconductivity: 

Bardeen, Cooper and Schrieffer explained the phenomenon of superconductivity in the year 

1957. The essence of the BCS theory is as follows. 

Consider an electron approaching a positive ion core and suffers attractive coulomb 

interaction. Due to this attraction ion core is set in motion and thus distorts that lattice. Let a 

second electron come in the way of distorted lattice and interaction between the two occurs 

which lowers the energy of the second electron. The two electrons therefore interact indirectly 

through the lattice distortion or the phonon field which lowers the energy of the electrons. The 

above interaction is interpreted as electron - Lattice – electron interaction through phonon 

field. 
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It was shown by Cooper that, this attractive force becomes maximum if two electrons have 

opposite spins and momentum. The attractive force may exceed coulombs repulsive force 

between the two electrons below the critical temperature, which results in the formation of 

bound pair of electrons called cooper pairs. 

 
Below the critical temperature the dense cloud of Cooper pairs form a collective state and the 

motion all Cooper pairs is correlated resulting in zero resistance of the material. 

High Temperature Superconductors: 

Superconducting materials which exhibit superconductivity at relatively higher temperatures 

are called high temperature superconductors. Thus high temperature superconductors possess 

higher value of critical temperature compared to conventional superconductors. Most of the 

high temperature superconductors are found to fall into the category of ceramics. In 1986 

George Bednorz and Alex Muller discovered a compound containing Lanthanum, Barium, 

Copper and Oxygen having TC = 30 K was developed. In 1987 scientists developed a 

compound which is an oxide of the form YBa2Cu3O7 which is referred to as 1-2-3 compound 

with TC > 90 K was discovered. 

All high temperature superconductors are oxides of copper and bear Perovskite crystal 

structure characterized by large number of copper-oxygen layers. It was found that addition of 

extra copper-oxygen layer pushes the critical temperature TC to higher values. The super 

currents are strong in the copper-oxygen layer and weak in the direction perpendicular to the 

planes.  

High Temperature superconductors are not commercially available mainly due to their 

current densities and difficulty in forming into wires. Once these difficulties are overcome such 

superconductors find many applications in various fields like zero-loss power transmission 

lines, super- strong magnetic materials and as the materials for levitating trains. 

Following is the list of some of High Temperature Superconductors. 
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DC - SQUID:  

 It has two Josephson junctions connected in parallel and works on the interference of 

current from two junctions. It works on the principle of DC Josephson effect which is the 

phenomenon of flow of super current through the junction even in the absence of external emf 

or voltage. 

Construction and working:  

 
 The cross sectional view of the arrangement is shown. P and Q are two Josephson 

Junctions arranged in parallel. When current I flows through the point C, it divides into I1 and 

I2. Hence the wave function due to these super currents (cooper pairs) experiences a phase shift 

at P and Q. In the absence of applied magnetic field, the phase difference between the wave 

functions is zero. If the magnetic field is applied perpendicular to the current loop, then phase 

difference between the wave functions will not be zero. This is identified by the sum of the 

currents I1 and I2.  The magnitude of phase difference is proportional to applied magnetic field. 

Hence, even if there is a weak magnetic field in the region will be detected. 

RF SQUID:  

                                    
 It works on the principle of AC Josephson effect. When dc voltage is applied across the 

Josephson junction, it leads to the development of oscillating current. It has single Josephson 

junction. Magnetic field is applied perpendicular to the plane of the current loop. The flux is 

coupled into a loop containing a single Josephson junction through an input coil and an RF 

source. Hence when the RF current changes, there is corresponding change in the flux linked 

with the coil. This variation is very sensitive and is measured. It is also used in the detection of 

low magnetic field. It is less sensitive compared to DC - SQUID. Due to its low cost 

manufacturing, it is commonly used in many applications. 

Problem: - A superconducting tin has a critical field of 306 gauss at 0K and 217 gauss at 2K. 

Find the critical temperature of superconducting tin. 

Data: - H0=306gauss at 0K,  HC=217gaussat 2K=T 
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Maglev vehicles: 

 

                 
Magnetically Levitated vehicles are called maglev vehicles. Since such vehicles float under 

magnetic effect they offer benefit like no friction, less power and noiseless transportation. The 

phenomenon on which the magnetic levitation is based is Meissner Effect. 

It uses direct current superconducting magnets mounted under the carriage in turn induce eddy 

currents in an aluminium, thus generating repulsive forces, which in turn lift the carriage. (A 

computer changes the amount of current to keep the train 1 cm from the track. This means 

there is no friction between the train and the track) Then the forward motion of the vehicle is 

achieved by the principle of synchronous linear induction (A maglev's guide way has a long 

line of electromagnets. These pull the train from the front and push it from behind). The 

vehicle does not levitate until it reaches 50 mph, so it is equipped with retractable wheels. The 

wheels serve almost the same purpose as those of an aero plane. 

A prototype maglev train has been constructed in Japan, which reached speeds of about 

430Km/hr. German made maglev train is operating between airport and Pudong district in the 

Chinese city of Shanghai. The superconducting magnets were cooled with liquid helium. 

Linear generators will produce all the electricity needed in the train’s interior. Only the part of 

the track that is used will be electrified so no energy is wasted. 

 

Q. No.  Questions 

1.  State and explain Meissner Effect. 

2.  Define critical field and hence explain its variation with temperature below critical 

temperature. 

3.  Explain Type -1 Type – 2 superconductors with neat figures.  

4.  Distinguish between Type -1 Type – 2 superconductors. 

5.  Describe high temperature superconductors.   

6.  Elucidate the BCS theory of superconductivity.  

7.  Explain the phenomenon of quantum tunneling.  

8.  Define Josephson junction and hence explain DC and AC Josephson effects.  

9.  Define SQUID and describe DC and RF SQUIDs. 

10. Brief out the applications of superconductivity in quantum computing. 
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Q. No. Numerical problems 

1.  Lead has superconducting transition temperature of 7.26 K. If the initial field at 0 k is 

50x103 A/m, calculate the critical field at 6 K. 

2.  A superconducting tin has a critical temperature of 3.7 K at zero magnetic field and a 

critical field of 0.0306 tesla at 0 K. Find the critical field at 2 K. 

3.  The superconducting transition temperature of lead is 7.26 K. Calculate the initial field 

at 0 K, given the critical field at 5 K is 33.644x103 A/m. 

4.  Calculate the ratio of critical fields for a superconductor at 7 K and 5K, given the 

critical temperature is 8 K. 

5.  The critical field for niobium is 1x105 A/m at 8 K and 2x105 A/m at 0 K. Calculate 

the transition temperature of the element. 

 

* * * * END * * * * 
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LASER 

Introduction: 

LASER is the acronym (short form) for Light Amplification by Stimulated Emission of Radiation. 

The important Characteristic properties of LASER beam are 

1. It is highly monochromatic. 

2. It is highly coherent. 

3. It is highly directional. 

4. It is a high intensity beam of light. 

In order to understand the mechanism involved in the production of laser beam, one has to know the 

process taking place in an atomic system such as absorption and Emission of radiation. 

Interaction of radiation with matter: 

The interaction of radiation with matter occurs through the following three processes, namely. 

1. Induced absorption 

2. Spontaneous emission and 

3. Stimulated emission 

1. Induced Absorption: 

 

When a suitable energy of a photon is incident on an atom, the photon is absorbed it. In this process 

the incident photon excites an atom from ground state to higher energy sate and hence it is known as 

Induced Absorption. 

Consider an atom in a lower energy states E1, it will excite to higher energy states E2 by absorbing the 

incident photon of energy E = ℎν = E2 – E1. where ℎ is the Planck’s constant and ν is the frequency of 

the incident photon. The induced absorption can be represented as 

*AhA    

Where A is the atom in the ground sate E1 and A* is the excited atom in the higher energy sate E2. 

Let N1 and N2 be the number of atoms in the energy levels E1 and E2, and Uν be the energy density of 

the incident radiation. Thus the probability of transition of atoms from E1 to E2 is depending on N1 and 

Uν . 

Therefore, the rate of induced absorption is  N1Uν = B12N1Uν 

Where B12 is a proportionality constant known as the Einstein's coefficient for induced absorption. 

E2 

E1 

E2 

E1 

N2 

N1 

N2 

N1 

Incident Photon, E = hν 

A 

A* 

(After)      )( *AhABefore  
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2. Spontaneous emission: 

 

Spontaneous emission is the process of emission of photon, when an atom transits from higher energy 

level to lower energy level without the influence of any external energy. 

An atom in the higher energy state E2 makes a transition to lower energy state E1 without the action of 

any external agency. the photon of energy E2 – E1 = ℎν is emitted. In this process the emitted photons 

need not travel in the same direction. Thus the emitted light beam is not directional. The spontaneous 

emission can be represented as 

hAA *  

In this process, the probability of transition of atoms from E2 to E1 is depending on N2 only. 

Therefore, the rate of spontaneous emission is  N2 = A21N2 

Where A21 is a proportionality constant known as the Einstein's coefficient for spontaneous emission. 

3. Stimulated emission: 

 

When a photon of suitable energy interacts with an atom in the higher energy state without loose 

energy then the atom is stimulated (Forced) to make transition from higher energy state E2 to the lower 

energy state E1 with the emission of a photon of energy E2 – E1 = ℎν. Both the incident photon and the 

emitted photons are coherent or in phase and travel in the same direction. This process is known as 

stimulated emission. The stimulated or induced emission can be represented as 

 hAhA 2*   

This kind of emission is responsible for laser action. 

In this process, the probability of transition of atoms from E2 to E1 is depending on N2 and Uν  

Therefore, the rate of stimulated emission is  N2Uν = B21N2Uν 

Where B21 is a proportionality constant known as the Einstein's coefficient for stimulated emission. 

 

 

 

(After)      )( * hAABefore 
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Expression for Energy density in terms of Einstein Coefficients: 

Consider a system containing of large number of atoms is under thermal equilibrium. Let E1 and E2 be 

the lower and higher energy levels which contains N1 and N2 number of atoms respectively. Let Uν be 

the energy density of the incident radiation. Hence the system absorbs and emits the energy through 

the processes of induced absorption spontaneous emission and stimulated emission. The energy of the 

photon absorbed and emitted by the atoms is E = ℎν = E2 – E1. 

The system be in thermal equilibrium; the total energy of the system remains unchanged in spite of the 

interaction of the incident radiation. 

At thermal equilibrium, 

Rate of Absorption = Rate of Spontaneous emission + Rate of Stimulated emission 

 we have,                               
 UU 221221112 NBNANB   

221221112 UU NANBNB  
 

  221221112U NANBNB 
 

 221112

221U
NBNB

NA




 

 both numerator & denominator of the above equation by B21 and N2, we get, 
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According to Boltzmann distribution law, we have 
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Now, by substituting this in equation (4), we have  

                             (6)                        
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According to Planck’s law, the equation for energy density E is given by 

                                      (7)                   
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Now, comparing equation (6) and equation (7), we have 
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This implies that the probability of induced absorption is equal to the probability of stimulated 

emission. Because of the above identity, A21 and B21 can be represented by A and B in equation (6) 

and it can be rewrite as.  



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This is the expression for energy density in terms of Einstein’s A and B coefficients.  

Condition for Lasing action: 

Consider a LASER system. Let an atom in 

the excited state is stimulated by a photon 

of suitable energy, so that atom makes 

stimulated emission. Then two coherent 

photons are obtained. These two coherent 

photons if stimulate two more atoms in the 

exited state to make emission then four 

coherent photons are obtained. These four coherent photons stimulate four more atoms in the excited 

state resulting in eight coherent photons and so on. As this process continues, number of coherent 

photons produced increases. These coherent photons constitute an intense beam of LASER. This 

phenomenon of building up of number of coherent photons, so as to get an intense LASER beam is 

called lasing action. 

LASER action could be achieved through the conditions of population inversion by pumping and 

meta-stable state. 

(i) Population Inversion: 

When a system is under thermal equilibrium, the number of atoms in excited state is less than the 

number of atoms in the lower energy state. The production of LASER is achieved through 

stimulated emission rather than induced absorption and spontaneous emission. This is possible only 

if the number of atoms in the higher energy state is more than the number of atoms in the lower 

energy state and the process of achieving this is called population inversion.  

Thus the essential conditions for population inversion are  

a) Higher energy state should possess a longer life time. 

b) The number of atoms in the higher energy state must be greater than the number of atoms in the 

lower energy state. 

 

Incident 

Photon 

Stage - 1  Stage - 2 Stage - 3 

 



Applied Physics for EEE Stream          Module – 3 : Laser & Optical Fiber             Dr. Shivalinge Gowda, Professor of Physics, MRIT  

6 

 

(ii) Pumping Process: 

 Population inversion is achieved by supplying energy from a suitable source is called Pumping. In 

addition, to have more stimulated emissions, the life time of atoms in the excited state must be 

longer. There are number of techniques for pumping a collection of atom to an inverted state 

(excited state).  

(iii) Meta stable state:  

The life time of an energy level is of the order 

of 10−8 second. If an atom possesses unusual 

longer life time in an energy state such a state is 

referred to as a meta-stable state. Usually the 

life time of meta-stable state varies from 10-2s to 

10-3s. Population inversion could be achieved with the help of three energy state with one of them a 

meta-stable state and is as shown in the figure. The population inversion is achieved between the 

state E2 and E1 as state E3 is a meta-stable state. 

Note : The principles of Laser are 1. Stimulated Emission, 2. Population Inversion & 3. Meta-stable 

State 

Requisites of a LASER system: 

The three requisites of a LASER system are; 

1. Active medium 

2. Pumping Source 

3. LASER cavity 

1. Active medium: Population inversion occurs at certain stage in the active medium due to the 

absorption of energy. The active medium supports meta-stable states. After this stage the active 

medium is capable of emitting LASER light.  

 

      

 

 

2. Pumping Source: Pumping source is an excitation source in order to achieve population inversion. 

That means more and more atoms are to be moved to higher energy state is called pumping. This is 

achieved by supplying suitable energy from an energy source. optical / light energy is used in optical 

pumping and electrical energy is used electrical pumping. 

Incident Photon 

E = hν 

Excited State 

Ground State 

Meta stable State 

E2 

E3 

E1 

Laser 

Bean 

Partial Mirror 100% Mirror 

Active Medium 

Pumping Process 
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3. LASER Cavity: The LASER Cavity is an active medium bound between two highly parallel 

mirrors. The reflection of photons from the mirrors results in multiple traverse of photons through the 

active medium inducing more and more stimulated emissions. Thus amplification of light is achieved. 

This also helps to tap certain permissible part of LASER energy from the active medium. The cavity 

resonates and the output will be maximum when the distance L between the mirrors is equal to an 

integral multiple of /2 .            

Where,  is the wavelength of incident suitable radiation and L is the length of the LASER cavity. 

Carbon Dioxide Laser laser: 
 CO2 laser invented by Kumar Patel in 1964. CO2 is a linear, symmetric molecule with the 

carbon atoms balanced against the two oxygen atoms.  O-C-O. Therefore, three characteristic 

vibrational modes exist. 

A carbon dioxide molecule three independent modes of vibrations. They are  

Symmetric: carbon atoms are at rest and both oxygen atoms vibrate simultaneously along the axis of 

the molecule departing or approaching the fixed carbon atoms. This mode is represented as (100) state 

(0.17 eV)  

Asymmetric: oxygen atoms and carbon atoms vibrate asymmetrically, i.e., oxygen atoms move in one 

direction while carbon atoms in the other direction. This mode is represented as (001) state and it is 

highest among all (0.29 eV)  

Bending: oxygen atoms and carbon atoms vibrate perpendicular to molecular axis. This mode is 

represented as (010) state and it is lowest among all (0.08 eV) 

 

 

Principle : In N2 molecule, the excited levels are metastable. The excited levels of N2 coincidence in 

energy of CO2 molecule. This helps in causing population inversion in CO2 gas laser by means of 

transfer of energy. 

Construction : It is a gas laser in which the gas mixture of CO2, He & N2 is filled in a discharge tube 

(radius 1cm, length 5m) at a pressure of 6-17 torr. The ratio of CO2 :N2 : He is 1:2:3.The mixture 

serves as gain medium. Electrical discharge is used as pumping method. The gas tube is fitted with 

Brewsters’ windows in order to achieve plane polarization and two plane mirrors on either end. The 

whole system is water cooled. 

(Brewster's law states that the tangent of the angle of polarization is numerically equal to the 

refractive index of the reflecting medium. i.e., n = tanθ) 
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Working: 
 

 

The energy levels of N2 and CO2 are as shown in Fig. Lasing action takes place in both the levels. 

Hence both N2 and CO2 are considered as active medium  

When high voltage is applied electric discharge occurs releasing electrons. Electrons collide with 

nitrogen molecules in the ground level exciting them to L2 level. This is first kind collision  

𝑒+𝑁2→𝑁2∗ 

L2 level is metastable and hence population inversion is achieved. The energy of L2 is nearly same as 

E5. Hence excited nitrogen molecules transfer their energy to CO2 molecules in the ground state 

through collisions. This is second kind collision  

𝑁2∗+𝐶𝑂2→𝐶𝑂2∗+𝑁2 

Once all CO2 are transferred to E5 level, stimulated emission is triggered. Transition from E5 to E4 

gives a beam of = 10.6 m and transition from E5 to E3 gives a beam of = 9.6 m. Afterwards CO2 

molecules return to E1 level via radiative and non-radiation transitions. 

Laser Range Finder (LRF) 

LRF is a device used to measure distances more accurately and it works on the principle of a radar  
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A typical LRF consist of(i) transmitter, (ii) receiver, (iii) display and readout.  

The transmitter uses a pulsed laser which sends out single, collimated and short pulse of laser radiation 

to the target. Target will reflect signals and these signals passes through filters. Filtered signal comes 

to receiver where it is amplified. The amplified signal enters the counter. By counting the number of 

pulses that have arrived, time of travel (t) can be calculated. Total distance travelled is 2d and time 

taken is t then 

2

2

ct
d

or

t

d
c





 

In ranging a target about 10 km away using these systems, accuracy within 5 m is easily obtained. 

 

Problems:  

(1) Show that the ratio of rate of spontaneous emission to induced absorption is given by 










kT

h

e



1   

)(absorption induced of Rate

 emission   sspontaneou of Rate

112

221

UNB

NA
  




















1

1
      Uand        ,

21

21

1

2

kT

h
kT

h

e
B

A
e

N

N
But





 




















1

1

1

absorption induced of Rate

 emission   sspontaneou of Rate

21

21
12

21

kT

h

kT

h

e
B

A

e
B

A





 























kT

h

kT

h

kT

h

eee

BBSince



11
absorption Induced of Rate

 emission   sspontaneou of Rate

    2112

 

(2) Find the number of modes and their frequency separation in a resonant cavity of length 1 m of a 

laser operating at wavelength 632.8nm. 
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Soln.; L = 1m, λ = 632.8 nm = 632.8x10-9m, n =? 

3160556
108.632

12

2
   OR      

2
    ;

9










n

L
n

n

L
WKT




 

 

1

1
2

1

2

2
     OR     

2
,












nn

nn

separationFrequency

L

cn
and

L

nc

L

nc

n

Lc
Also










 

 

Hz
L

c
separationFrequency

L

c

L

cncnc

L

cn

L

nc
separationFrequency

8
8

105.1
12

103

2

222

1

2















 

(3) A laser operating at 632.8nm emits 3.182x1016 photons per second. Calculate the output 

power of the laser. Also find the percentage power converted into coherent light energy, if 

the input power is 100 watt. 

Soln.; λ = 632.8nm = 632.8x10-9m, N = 3.182x10-16photon/sec, p = ?, input power = 100 watt,  

%age power =? 

PtEENWKT .        ,  

       OR     .
t

Nhc
PPt

hc
N


  

watt
x

P  01.0
1108.632

10310626.610182.3
9

83416











 

attP  w01.0  

01.0100
100

01.0
100 

powerinput

poweroutput
PowerPercentage  

%01.0PowerPercentage  

(4) Calculate the wavelength of laser emitted from an extrinsic semiconductor laser if the 

band gap is 0.02eV. To which region of spectrum does it belong? 

Soln.; λ = ?, Eg = 0.02 eV = 0.02x1.602x10-19 J 

m
E

hc

hc
hEWKT

g

g

5

19

834

10208.6
10602.102.0

10310626.6

    ,




















 

This wavelength region belongs to infrared region (0.01 to 7x10-5m). 

NOTE: Visible region 7x10-5m to 4x10-5m, ultraviolet 4x10-5m to 10-7m 
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(5) A pulse from laser with power 1mW lost for 10nS, if the number of photons emitted per 

pulse is 3.491x107. Calculate the wavelength of laser. (May22) 

Soln.; P= 1 x10-3W, t=10 x10-9sec, N=3.491x107, λ=?  

                         PtEN .  

            Pt

Nhc
Pt

hc
N  

  

m7

93

8347

10938.6
1010101

10310625.610491.3 









  

(6) A pulsed laser emits photons of wavelength 780nm with 20mW average power per pulse. 

Calculate the number of photons contained in each pulse if the pulse duration is 10ns. 

Soln.; λ=780 x10-9m, P= 20 x10-3W, N=?, t=10 x10-9sec 

PtENWKT .     ,  

hc

Pt
NPt

hc
N




      OR           

photonsN 8

834

939

10849.7
10310625.6

1010102010780











 

(6a) A laser source has a power output of 10-3W. Calculate the number of photons emitted per 

second given wavelength of laser 692.8nm. (Model QP) 

Soln., λ = 692.8 x10-9m, P = 10-3W, N = ?, t = 1sec 

hc

Pt
NWKT


      ,  

condphotons/se10486.3
10310625.6

110108.692 15

834

39











N  

(7) In a laser system, operating at 323K, the wavelength of the light emitted is 1.3µm. 

Determine the ratio of population of the energy levels (Boltzmann's factor). 

Soln.,  T= 323K, λ=1.3 x10-6m,  
1

2

N

N
? 

KT

hc

KT

h

ee
N

N
WKT 





1

2    ,  

15304.343231038.1103.1

10310626.6

1

2 10265.1
236

834










xee
N

N
 

(8) The ratio of population of two energy levels out of which one corresponds to meta stable 

state is 1.059 x 10-30. Find the wavelength of light emitted at 330K. 

Soln., ,10059.1 30

1

2 
N

N
 T = 330K,   = ? 
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KT

hc

KT

h

ee
N

N
WKT 





1

2    ,  

KT

hc

N

N
OR














1

2ln       

 
mx

N

N
KT

hc 7

3023

834

1

2

10323.6
10059.1ln3301038.1

10310626.6

ln























  

nmOR 3.632           

(8a) Calculate the ratio of population for a given pair of energy levels corresponding to 

emission of radiation 694.3nm at a temperature of 300K. (Model QP) 

              KT

hc

KT

h

ee
N

N
WKT 





1

2    ,      

                        31155.693001038.1103.694

10310626.6

1

2 1025.9
239

834










ee
N

N
 

(9) Calculate the ratio of (i) Einstein's coefficients and (ii) stimulated to spontaneous emissions, 

for a system in thermal equilibrium at 300K in which radiations of wavelength 1.39µm 

are emitted. 

Soln., ?,     and    ??
21

12

21

21

21

21 
A

B

B

A

B

A
 Rate of stimulated to spontaneous=? λ=1.39 X10-6m,      

          T=300K 

 
15

21

21

15

36

34

33

3

21

21

102.6

102.6
1039.1

10626.6888
      , )(

















B

A

h

c

h

B

A
WKTi







 

 
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UNB
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
  



















1

1
  U,

21
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kT

h

e
B

A
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  



































1

1

1

1
.
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emission stimulatedofRate
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kT
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kT
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ee
B

A

A

B



 

   
16

15543.34

3001038.11039.1

10310626.6
1096.9

1100041

1

1

1

1

1

emission sspontaneouofRate

emission stimulatedofRate
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






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Model Questions: 

1. What is LASER? Enumerate the Characteristics of a LASER Beam.  

2. Discuss the three possible ways through which radiation and matter interaction can take place. 

3. Explain the terms, (i) Induced absorption, (ii) Spontaneous emission, (iii) Stimulated emission,  

(iv) Population inversion, (v) Meta-stable state & (vi) Resonant cavity.  

4. Explain the rates of absorption and emission and hence derive an expression for energy density 

using Einstein’s A and B coefficients.  

5. Explain requisites of LASER system.  

6. What is Semiconductor LASER? Describe with energy band diagram the construction & working 

of Semiconductor diode LASER along with applications.  

7. Discuss the working of LASER barcode reader.  

8. With the help of a sketch describe the principle, construction and working of CO2 Laser.  

9. Explain LASER Range Finder in defence as application. 

Numerical Problems:  

1. Find the ratio of population of two energy levels in a LASER if the transition between them 

produces light of wavelength 6493 Å, assuming the ambient temperature at 27°C.  

2. Find the ratio of population of two energy levels in a medium at thermal equilibrium, if the 

wavelength of light emitted at 291 K is 6928 Å.  

3. The ratio of population of two energy levels out of which one corresponds to metastable state is 

1.059×10−30. Find the wavelength of light emitted at 330 K.  

4. Find the ratio of population of two energy levels in a medium at thermal equilibrium, if the 

wavelength of light emitted at 300 K is 10µm. Also find the effective temperature when energy 

levels are equally populated.  

5. The average power output of a LASER beam of wave�length 6500 Å is 10 mW. Find the number 

of photons emitted per second by the LASER source.  

6. The average power of a LASER beam of wavelength 6328 Å is 5 mW. Find the number of photons 

emitted per second by the LASER source.  

7. A pulsed LASER has an average power output 1.5 mW per pulse and pulse duration is 20 ns. The 

number of photons emitted per pulse is estimated to be 1.047×108. Find the wavelength of the 

emitted LASER.  

8. A pulsed LASER with power 1 mW lasts for 10 ns. If the number of photons emitted per pulse is 

5×107. Calculate the wavelength of LASER. 
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9. A Ruby LASER emits a pulse of 20 ns duration with average power per pulse being 100 kW. If the 

number of photons in each pulse is 6.981×1015, calculate the wavelength of photons.  

10. In a LASER system when the energy difference between two energy levels is 2×10−19 J, the 

average power output of LASER beam is found to be 4 mW. Calculate number of photons emitted 

per second. 
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OPTICAL FIBERS 

Introduction 

Optical fiber is a device used to transmit light through bundle of thin fibers of transparent dielectric 

material from one end to another end for a very long distance. It works on the principle of Total 

Internal Reflection (TIR). 

Construction: The sectional view of a typical optical fiber is as 

shown in the figure. It has three regions named as Core, 

Cladding and Sheath. 

1. The innermost light guiding region is called Core. 

2. The layer covering core is called Cladding or Clad, which helps in total internal reflection of light. 

3. The outermost protective layer is called Sheath (Coating), which protects the fiber from mechanical 

stress and chemical reactions. 

The optical fiber is designed to support total internal reflection and hence the refractive index (RI) of 

core n1 is made greater than the RI of cladding n2. A typical fiber will be of the order of few microns. 

Total Internal Reflection  

Consider a ray of light moving from a denser 

medium of refractive index n1 to rarer medium of 

refractive index n2. As a result, the incident ray of 

light bends away from the normal. Hence the angle of 

refraction θ2 is greater than the angle of incidence θ1. 

As the angle of incidence increases the angle of 

refraction also increases. For a particular angle of 

incidence, i = θc the refracted ray grazes the interface separating the two media. The corresponding 

angle of incidence θc is called critical angle. If the angle of incidence is greater than the critical angle 

θc, then the light ray is turned back into the same medium and is called Total Internal Reflection. 

The above figure shows Total Internal Reflection; 

According to Snell’s law 

  sinsin 2211  θ = nθn  

when θ1= θc, then θ2 = 90⁰  and  sin90⁰ = 1  

21 sin    = nθn c  

⸫  








1

21

1

2 sinor             sin
n

n
 =θ

n

n
 = θ cc  

 

Optical Fiber 

Core 

Cladding 
Sheath 

Note: Angle of incidence, i = θc = critical angle,  θ1< θc & θ3 > θc 

- - - Normal 

r = θ 2 

Rarer Medium, n2 

 

Denser Medium, n1 

 

Total Internal Reflection 

θc 

r = 90 

θ1 θ3 



Applied Physics for EEE Stream          Module – 3 : Laser & Optical Fiber             Dr. Shivalinge Gowda, Professor of Physics, MRIT  

16 

 

Angle of acceptance and Numerical aperture (NA): 

Acceptance angle () is the maximum angle of incidence with which the ray is sent into the fiber core 

which allows the incident light to be guided by the core. It is also called as waveguide acceptance 

angle or acceptance cone half angle. 

In optics, the numerical aperture (NA) of an optical fiber is a dimensionless number that characterizes 

the range of angles over which the fiber can accept light. Numerical aperture represents the light 

gathering capability of optical fiber and it is defined as sine of the acceptance angle.  

 0sinθ NA    

Condition for propagation (Derivation for Angle of Acceptance) 

 

 
 

 

 

 
 
Consider an optical fiber with core made of refractive index n1 and cladding made of refractive index 

n2. Let n0 be the refractive index of the surrounding medium. 

Let a ray of light OA entering into the core at an angle of incidence θ0 w.r.t fiber axis. Then it is 

refracted along AB at an angle θ1 and meet the core-cladding interface at critical angle of incidence (θc 

= 90 − θ1). Then the refracted ray grazes along BC.  

By applying Snell’s law at A, we get  

 sinsin 1100  θ = nθn  

(1)            sin sin 1

0

1
0 θ

n

n
 = θ  

Again by applying Snell’s law at B, we get  

get  we1, sin90   and  cosθ)θ-sin(90 since,          90sin)90sin( 11211    = nθn  

(2)         cosor         cos
1

2
1211

n

n
 =θ  = nθn  

1

2

11

2

1

2 cos1inor         1cossin θ =θs   =θθ   

(3)         1in  
2

1

2

1

2

n

n
 =θs   

By substituting this in equation (1), we get 

(4)      
1

   
1

     1 sin 22

1

0

22

1

10

1

2

1

2

0

1
0 22

2

nn
n

nn
nn

n

n

n

n

n
 = θ   

Since, Numerical Aperture, NA = sinθ0, 

     
1 22

1

0

2nn
n

NA =   

n0 
θ0 n1 

Axis of the fiber 

Acceptance  

          Cone 

θ1 

 

n2 θ2 = 90⁰ 

Cladding, n2 

Core, n1 90-θ1 

O 

A 

B 
C 
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If the surrounding medium is air, then n0 = 1 

(5)          sin 22

10 2nnθNA =   

Light is transmitted through the fiber only when 
22

100 2sinsinor          nnθθθθ ii   

(6)          sin   22

1 2nnNAθi   

This is the condition for propagation for light through the optical fiber with multiple total internal 

reflections. 

Fractional index change (∆): 

 It is the ratio of the difference between the refractive indices of the core and cladding to the 

refractive index of core of an optical fiber.  

i.e., 
1

21

n

nn 


 

Δ is always positive and less than 1. Because, n1 > n2.

 

Relation between NA and ∆: 

WKT, 2

2

2

1 nnNA       and  
1

21

n

nn 
  

  

 211

2121

nnnNA

nnnnNA




 

Since 21 nn  ,  11 2nnNA   

 21nNA  

Modes of Propagation: In an optical fiber the wave propagation mode is referred to as fiber modes. 

The light ray paths along which the waves are in phase inside the fiber are known as modes. 

In simple words, the allowed paths for the light ray inside the fiber are known as modes of 

propagation. 

 
λ

d
     modes ofNumber   

Where, d is the diameter of the core and L is the wavelength of the light ray travelling through the 

fiber. 

 The different types of fiber modes are guided mode, leaky mode and radiation mo     de. In an optical 

communication system, signals are transmitted using guided modes only. 

V- Number: The number of modes supported for propagation in the fiber depends on the core size, 

operating wavelength and refractive indices of core and cladding materials. It can be conveniently 

defined using a normalized frequency parameter, called V- number and it is given by 



Applied Physics for EEE Stream          Module – 3 : Laser & Optical Fiber             Dr. Shivalinge Gowda, Professor of Physics, MRIT  

18 

 

2

2

2

1 nn
d

V 



 

Where λ is the (operating) wavelength of light propagating in the fiber. 

d is the core diameter 

n1 is the refractive index of the core. 

n2 is the refractive index of the cladding. 

For V>>1, the number of modes supported by the fiber is given by 

2

2V
N 

 

Refractive index profile: Refractive index profile is the distribution of refractive indices of materials 

within an optical fiber. Some optical fiber has a step-index profile, in which the core has one 

uniformly-distributed index and the cladding has a lower uniformly-distributed index. Other optical 

fiber has a graded-index profile, in which the refractive index varies gradually as a function of radial 

distance from the fiber center.  

Types of optical fiber: 

Based on the refractive index profile, core size and mode of propagation, the fibers are classified into 

three types, namely 

1. Step-index single mode fiber 

2. Step-index multi-mode fiber 

3. Graded-index multi-mode fiber 

1. Step-index single mode fiber: 

 
A single mode step index fiber consists of a very fine thin core (made of glass material) of uniform 

refractive index n1 is surrounded by a cladding of refractive index n2 lower than that of the core, Since 

there is abrupt change in RI of core and cladding at the interface it is called step index fiber.  The 

diameter of the core is about 8 to 10 µm and that of cladding is about 60 to 70 µm. Since the core size 

https://www.wikiwand.com/en/Refractive_index
https://www.wikiwand.com/en/Optical_fiber
https://www.wikiwand.com/en/Step-index_profile
https://www.wikiwand.com/en/Graded-index_fiber
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is small, the numerical aperture is also small and hence it supports for single mode as shown in the 

figure. This need laser as the source of light. 

2. Step-index multi-mode fiber: 

 
 

Step-index multimode fiber is similar to that of a single mode fiber, but it has a larger core diameter 

and constant refractive index, by the virtue of which it will be able to support for large number of 

modes of propagation as shown in figure. The diameter of the core is about 50 to 200 µm and that of 

the cladding is about 100 to 250 µm. The step-index multi mode fiber can accept either a laser or LED 

as source of light. It is the least expensive of all. They are used in data links. 

 

3. Graded-index multi-mode fiber: 

 
 

A graded multimode fiber has concentric layers of RI is called GRIN fiber. That means the RI of the 

core varies with distance from the axis of the fiber. The refractive index of the core along the axis of 

the fiber is maximum and it decreases uniformly on either side of the axis towards the core-cladding 

interface. Hence the refractive index profile follows a parabolic shape and light transmissions in the 

fiber are shown in figure. The diameter of the core and that of cladding are almost same as that of 

multi-mode index fibers. Either a laser or LED's are used as light sources for operating the system. It is 

the most expensive of all and used in telecommunication links. 
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Attenuation (Transmission loss or fiber loss): 

 Attenuation is the reduction in power or intensity of light as it travels in the fiber. The reduction may 

be due to light absorption, scattering and radiation losses (extensive fiber bends). The net attenuation is 

given by a factor called the attenuation coefficient ( ) in dB/km and it is defined as optical power 

output to the optical power input for a fiber of length L and a wavelength of the propagating light. 

KmdB
P

P

L in

out /log
10











  

Attenuation in an optical fiber is comparatively less than that in coaxial cables. 

Causes of attenuation: The three mechanism through which attenuation takes place are 

(1) Absorption losses: The absorption losses occur due to the presence of impurities (like Cr, Cu, ions 

trapped within the glass at the time of manufacture) or due to the basic material (glass) itself absorb 

energy at certain wavelength. Typical absorption losses are of the order of 0.1dB/km in the 0.8 to 1.6 

µm wavelength ranges and 0.03dB/km in the 1.3 to 1.6 µm wavelength range. 

(2) Scattering losses: Scattering losses occur due to imperfections and impurities in the fiber material. 

Refractive index changes while the signal travels in the fiber. This sharp variation in refractive index is 

induced by the localized structural inhomogeneity. This type of scattering is same as Rayleigh 

scattering. Rayleigh scattering occurs whenever a light wave travels through a medium having 

scattering objects whose dimensions are smaller than a wavelength. Thus it becomes a loss. 

(3) Geometrical loss (Radiation loss): 

 

Geometrical losses occur due to (a) macroscopic and (b) microscopic bends. 

(a) Due to sharp bends, some of the light energy escapes through the cladding and leads to loss in the 

intensity of light ray. 

(b) The microscopic bends cause irregular reflections and some of them then leak through the fiber. 

 

 

Macroscopic Bending 
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Applications: 

1. Intensity Modulated Optical Fiber Displacement Sensor : 

 
It consists of a bundle of transmitting fibers coupled to the laser source and a bundle of receiving fibers 

coupled to the detector as shown in the figure.  

The axis of the transmitting fiber and the receiving fiber with respect to the moving target can be 

adjusted to increase the sensitivity of the sensor. 

 

Light from the source is transmitted through the transmitting fiber and is made to fall on the moving 

target. The light reflected from the target is made to pass through the receiving fiber and the same is 

detected by the detector.  

Based on the intensity of the light received, the displacement of the target can be measured, (i.e.) if the 

received intensity is more then we can say that the target is moving towards the sensor and if the 

intensity is less, we can say that the target is moving away from the sensor. 

(2) Fiber Optic communication: 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

Transmitter Channel Receiver Output Input 

Block Diagram 
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A basic of point to point communication system using optical fiber is shown in figure. The voice of a 

telephone user gives rise to electrical signals. These electrical signals are converted to binary data 

using coder. These electrical pulses are converted into pulses of optical power by an optical source 

(such as an LED or laser) in the binary form. 

 Now the light pulses is coupled into the optical fiber at an incidence angle less than that of the 

acceptance angle. The light pulses inside the fiber undergo total internal reflection and reach the other 

end of the fiber and fed into a light detector. Light detector converts the light signals into pulses of 

electric signals (current). These pulses are further decoded into analog electrical signal and converted 

into the usable form like audio or video. 

Advantages (Merits) of optical communication system: 

1) Transmission loss (attenuation) is low. 

2) Fiber is lighter and compact than equivalent copper cables. 

3) Fiber have large data rate compared to equivalent copper cables. 

4) There is no interference in the transmission of light from electromagnetic waves generated by 

electrical appliances. 

5) Fibers are free from corrosion effect caused by salt, pollution and radiation. 

6) Cost of the fiber is less compared to the other modes of communication. 

Demerits (Disadvantages) : 

1) The joining of two ends of the separated fiber called splicing, is too difficult and fiber loss is 

more. 

2) Repeaters are required at regular interval of lengths to amplify the weak signal in long distance 

communication. 

3) Bends will increase the loss of the fiber. 

4) Maintenance cost of the systems (Repeaters, detectors etc.,) with optical fibers are very high. 

5) Fibers undergo expansion and contraction with temperature that upset some critical alignment 

which lead to loss in signal power. 

 

Problems: 
 

 (1) Calculate the numerical aperture and angle of acceptance of a given optical fiber if the 

refractive index of the core and cladding are 1.563 and 1.498 respectively. 

Soln.: NA = ?, θa = ? n1 = 1.563 & n2 = 1.498 

2

2

2

1 nnNA   

   22
498.1563.1 NA        

446.0NA  
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NASin a   

 446.01 Sina  

05.26a  

(2) An optic glass fiber of refractive index 1.450 is to be clad with another glass to ensure 

internal reflection that will contain light traveling within 5 degree of the fiber axis. What 

maximum index of refraction is allowed for the cladding? 

Soln.: n1 = 1.450, θr = 50 (or i = 90-5 = 850), n2 = ? 

rr nn
n

n
 cos  or                   cos 12

1

2   

444.15cos45.12 n  

(3) An optic fiber has a NA of 0.2 and a cladding refractive index of 1.59. Determine the core 

refractive index and also the acceptance angle for the fiber in water which has a refractive 

index of 1.33 

Soln.: NA=0.2, n2=1.59, n1=? , θa=? , n0=1.33 

       NASin a   

  231154.112.0  01   Sina  

2

0

2

2

2

1

n

nn
NA


  

  612.12

2

2

01  nnNAn  

(4) An optical has core refractive index 1.5 and clad refractive index 3% less than that of core. 

Calculate NA, angle of acceptance and internal critical angle. 

Soln.: n1 = 1.5, n2 = 1.5 - (3% of 1.5), NA = ?, θa = ? & θc = ? 

     n2 =1.5 - (0.03 x 1.5) =1.455 

    3647.0455.15.1
222

2

2

1  nnNA  

    39.213647.011   SinNASina  

93.75
5.1

455.11

1

21 
















  Sin

n

n
Sina   

(5) (Isem 2023) The angle of accepatance of an optical fibre is 300 when kept in air. Find the 

angle of accptance when it is in medium of refractive index 1.33 

Soln.: Soln.: θa= 30, n0 = 1.33, θa= ?  

2

2

2

1 nnSin a    
2

0

2

2

2

11     and
n

nn
Sin a


     
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0

1 1

nSin
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a

a 

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   or   

0

1

n

Sin
Sin a

a


   

33.1

301 Sin
Sin a   or    3759.011  Sina  

08.221 a  

 

(6) A fiber sample 500 m long has an input power of 8.6 micro watt and an output power of 7.5 

µW. What is the loss specification for the cable sample? 

Soln.: L = 500 m = 0.5 km, Pin= 8.6 µW, Pout = 7.5 µW,  ? 

kmdB
P

P

L in

out /log
10









  

kmdB /19.1
6.8

5.7
log

5.0

10









 ,   

(7) The attenuation of light in an optical fiber is estimated to be 2.0dB/km. What fraction of the 

initial intensity remains after 1 km and after 8 km? 

Soln.:  = 2.0 dB/km, ?

1



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

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
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Intensity remaining after 1 km is  
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Intensity remaining after 8 km is  
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out
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(8) An optical signal propagating in a fiber retains 85% of input power after traveling a distance 

of 500 m in the fiber. Calculate the attenuation coefficient. 

Soln.: 

kmdB
P

P

L in
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
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(8) In a step index fiber, the relative refractive index difference is 2% and refractive index of 

cladding is 1.4. Calculate the refractive index of core and also the critical propagation angle. 

Soln.: ∆=2%=0.02, n2=1.4,  n1=?, θr=? 

1

2

1

21 1
n

n

n

nn



  




1
            1       2

1

1

2 n
nor

n

n
or  

4285.1
02.01

4.1
    1 


 n  

98.0
4285.1

4.1
cos

1

2 
n

n
r  

921148.11)98.0(cos 1  

r  

(9) Consider a slab waveguide made of AlGaAs having RI for core and clad 3.6 and 3.55 

respectively. Find, how many modes can propagate in this waveguide if d = 5λ 

Soln.: n1=3.6, n2=3.55, N=?, d=5λ 

2

2

2

2

1

2

2

1

2 







 nn
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   

4410.44

55.36.3
5
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1
2
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









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


N

N



 

(10) A step- index optical fiber has a core index of 1.46 and the cladding index of 1.409. If the 

core diameter is 80micro m and the wavelength of the light source is 1.2micro m, determine 

the number of modes present in the fiber. 

Soln.: n1 = 1.46, n2 = 1.409, d = 80x10-6 m, λ = 1.2x10-6 m, N = ? 

2

2

2

2

1
2
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
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

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   
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(11) A single mode step index optical fiber used in communication has a core with refractive 

index 1.45, refractive index change of 5x10-3 and a core diameter of 6µm. If the operating 

wavelength of the communication system is 1.2 micro m, determine the V- parameter of the 

cable. 

Soln.: n1=1.45, ∆ = 5x10-3, d = 6µm = 6x10-6m, λ = 1.2x10-6 m, V = ? 
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(12) (May22) Calculate NA, Relative RI, V- number and the number of modes in an optical fiber 

of core diameter 50µm and core and cladding RI are 1.41 and 1.40 respectively. Given 

wavelength of source 820 nm. 

Soln.: NA = ?, ∆ = ?,  V = ?, N = ?, d = 50 µm =50x10-6 m, n1 = 1.41, n2 = 1.40,  λ = 820x10-9 m  

    168.040.141.1
222

2

2

1  nnNA                 

3

1

21 1009.7
41.1

40.141.1 






n

nn
       

   
11.32

10820

40.141.11050
9

226
2

2

2

1 












nn

d
V                           515

2

)11.32(

2

22


V

N                     

(13) The refractive indices of the core and cladding of a step- index optical fiber are 1.45 and 

1.40 respectively and its core diameter is 45µm. Calculate its relative refractive index 

difference, NA, V- number at wavelength 1000nm and the number of modes. 

Soln.: n1 = 1.45, n2 = 1.40, d = 45 µm = 45x10-6 m, λ=1000 x10-9 m, ∆ = ?,  NA = ?, V = ?, N =? 
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Model Questions:  

1. Define the terms: (i) angle of acceptance, (ii) numerical aperture, (iii) modes of propagation &             

(iv) refractive index profile.  

2. Obtain an expression for numerical aperture and arrive at the condition for propagation.  

3. Explain modes of propagation and RI profile.  

4. What is attenuation? Explain the factors contributing to the fiber loss.  

5. Discuss the types of optical fibers based on modes of propagation and RI profile.  
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6. Explain attenuation along with the expression for attenuation co-efficient and also discuss the 

types of fiber losses.  

7. Discuss point to point optical fiber communication system and mention its advantages over the 

conventional communication system.  

8. Discuss the advantages and disadvantages of an optical communication. 

Numerical Problems: 

1. Calculate the numerical aperture and angle of acceptance for an optical fiber having refractive 

indices 1.563 and 1.498 for core and cladding respectively.  

2. The refractive indices of the core and cladding of a step index optical fiber are 1.45 and 1.4 

respectively and its core diameter is 45 µm. Calculate its fractional refractive index change and 

numerical aperture.  

3. Calculate numerical aperture, acceptance angle and critical angle of a fiber having a core RI 1.50 

and cladding RI 1.45.  

4. An optical fiber has a numerical aperture of 0.32. The refractive index of cladding is 1.48. 

Calculate the refractive index of the core, the acceptance angle of the fiber and the fractional 

index change.  

5. An optical signal propagating in a fiber retains 85% of input power after travelling a distance of 

500 m in the fiber. Calculate the attenuation coefficient.  

6. An optical fiber has core RI 1.5 and RI of cladding is 3% less than the core index. Calculate the 

numerical aperture, angle of acceptance critical angle. 

7. The numerical aperture of an optical fiber is 0.2 when surround by air. Determine the RI of its 

core, given the RI of the cladding is 1.59. Also find the acceptance angle when the fiber is in 

water of RI 1.33.  

8. The angle of acceptance of an optical fiber is 300 when kept in air. Find the angle of acceptance 

when it is in medium of refractive index 1.33.  

9. An optical fiber of 600 m long has input power of 120 mW which emerges out with power of 90 

mW. Find attenuation in fiber.  

10. The attenuation of light in an optical fiber is 3.6 dB/km. What fraction of its initial intensity is 

remains after i) 1 km and ii) 3 km ?  

11. The attenuation of light in an optical fiber is 2.2 dB/km. What fraction of its initial intensity is 

remains after i) 2 km and ii) 6 km? 
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Maxwell’s Equations and EM waves:      8 Hrs 

Maxwell’s Equations: Fundamentals of Vector Calculus. Divergence and Curl of Electric field 

and Magnetic field (static), Gauss’ divergence theorem and Stoke’s theorem. Description of 

laws of Electrostatics, Magnetism, Faraday’s laws of EMI, Current Density, Equation of 

Continuity, Displacement Current (with derivation), Maxwell’s equations in vacuum, 

Numerical Problems 

EM Waves: The wave equation in differential form in free space (Derivation of the equation 

using Maxwell’s equations), Plane Electromagnetic Waves in vacuum, their transverse nature. 

 

Pre-requisite: Electricity & Magnetism 

Self-learning: Fundamentals of vector calculus. 
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Maxwell’s Equations and EM waves 

Vector Analysis 
Introduction 

We come across with various types of physical quantities in our daily life. They are classified into 

two categories viz Scalars and Vectors. 

Scalars 

Any physical quantity having only magnitude is known as Scalar. Just a number along with an 

appropriate unit determines it. There is no scope for the direction. Time, temperature, Speed, 

energy, work done, voltage, charge, power, volume, etc are some more examples for scalar.  

Vectors 

Vector is a quantity having both magnitude and direction. Displacement, velocity, acceleration, 

force, electric field intensity, momentum, torque, etc are vectors. 

A vector is represented by as follows 

ˆR R a

Where, R  = magnitude of the vector 

â  = direction of the vector 

The magnitude of 𝑅⃗  is given in terms of its coordinates as 

|𝑅⃗ | = √𝑥2 + 𝑦2 + 𝑧2 

Unit vector is given by 

𝑎̂ =
𝑅⃗ 

|𝑅⃗ |
=

𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂

√𝑥2 + 𝑦2 + 𝑧2

Here i,  j, k are unit vectors 

Now consider two distinct points P (x1,y1,z1)  and Q (x2,y2,z2) then 

𝑃𝑄⃗⃗⃗⃗  ⃗ = 𝑅⃗ = (𝑥2 − 𝑥1)𝑖 + (𝑦2 − 𝑦1)𝑗 + (𝑧2 − 𝑧1)𝑘

Here, (𝑥2 − 𝑥1), (𝑦2 − 𝑦1), 𝑎𝑛𝑑 (𝑧2 − 𝑧1) are called as components of the vector

|𝑅⃗ | = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2

𝑎̂ =
𝑅⃗ 

|𝑅⃗ |
=

(𝑥2 − 𝑥1)𝑖 + (𝑦2 − 𝑦1)𝑗 + (𝑧2 − 𝑧1)𝑘

√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2

Vector multiplication 

A vector can be multiplied by another vector in two different ways namely (i) Scalar product (dot 

product) (ii) Vector product (cross product) 

Module-4
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I. Scalar Product (dot product): 

Scalar product or dot product of two vectors is defined as the product of their magnitudes and 

cosine of the angle between them. Scalar product of two vectors results in a number (a scalar) 

If 𝑃⃗  and 𝑄⃗  are two non-zero vectors acting at point at an angle  then 

𝑃⃗ . 𝑄⃗ = |𝑃⃗ ||𝑄⃗ |𝑐𝑜𝑠𝜃 

Work done (W) by the applied force on a rigid body is an example for scalar product and is given 

by the scalar product of force (F) and displacement (S) 

𝑊 = 𝐹 . 𝑆 = |𝐹 ||𝑆 |𝑐𝑜𝑠𝜃 

Electric flux, another example, is the scalar product of electric intensity and surface area. In scalar 

product we have 

𝑖̂. 𝑗̂ = 𝑗̂. 𝑘̂ = 𝑘̂. 𝑖̂ = 0, 𝑖̂. 𝑖̂ = 𝑗̂. 𝑗̂ = 𝑘̂. 𝑘̂ = 1 

Basic properties of scalar product are 

i. 𝑃⃗ . 𝑄⃗ = 𝑄⃗ . 𝑃⃗ Commutative property 

ii. (𝑘𝑃⃗ ). 𝑄⃗ = 𝑃⃗ . (𝑘𝑄⃗ ) = 𝑘(𝑃⃗ . 𝑄⃗ ) Associative property 

iii. 𝑃⃗ . (𝑄⃗ + 𝑅⃗ ) = 𝑃⃗ . 𝑄⃗ +𝑃⃗ . 𝑅⃗ Distributive property 

iv. 𝑃⃗ . 0 = 0. 𝑃⃗ = 0

II. Vector product (Cross product):

Vector product or cross product of two vectors is defined as the product of their magnitudes and 

sine of the angle between them. The vector product of two vectors always gives a vector quantity. 

If P  and Q  are two non-zero vectors acting at point at an angle  then 

sin P Q P Q  

The cross product of P  and Q   is always perpendicular to the plane containing P  and Q

Torque () acting on a dipole placed in the electric field is given by the cross product of field 

intensity (E) and dipole moment (p) 

sinp E p E      

Force acting on a charged particle moving in the external magnetic field is given by the cross 

product of velocity and magnetic field intensity. In vector product we have 

𝑖̂ × 𝑗̂ = 𝑘̂,      𝑗̂ × 𝑘̂ = 𝑖,̂      𝑘̂ × 𝑖̂ = 𝑗̂,       𝑖̂ × 𝑖 = 𝑗̂ × 𝑗̂ = 𝑘̂ × 𝑘̂ = 0 
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In cross product the direction of the resultant vector is given by thumb rule 

Basic properties of vector product are 

i. 𝑃⃗ × 𝑄⃗ = −(𝑄⃗⃗⃗⃗ × 𝑃)⃗⃗⃗⃗ Anti-commutative property 

ii. (𝑘𝑃⃗ ) × 𝑄⃗ = 𝑃⃗ × (𝑘𝑄⃗ ) = 𝑘(𝑃⃗ × 𝑄⃗ ) Associative property with respect to scalar

iii. 𝑃⃗ × (𝑄⃗ × 𝑅⃗ ) ≠ (𝑃⃗ × 𝑄⃗ ) × 𝑅⃗ Not Associative property with respect to vector 

iv. 𝑃⃗ × (𝑄⃗ + 𝑅⃗ ) = 𝑃⃗ × 𝑄⃗ +𝑃⃗ × 𝑅⃗ Distributive property 

v. 𝑃⃗ × 0 = 0 × 𝑃⃗ = 0

Scalar and Vector fields 

A point in space is described by three independent parameters. A continuous function of the 

position of a point in space is known as point function. The region of space in which the point 

function specifies a physical quantity is known as field.  

Any field, for that matter, always represents region of influence. Consider some examples. 

Electrostatic force around a charged body, temperature of air around the flame, density of gas that 

makes up the body of a star, flow of incompressible fluid, pressure of air on the earth etc. In these 

examples, each point function represents a physical quantity. The point function may have only 

magnitude or both magnitude and direction. Based on the nature of the point function, field is 

classified as Scalar field and Vector field    

Scalar field: 

Scalar field is a region of space where each point is associated with scalar point function i.e., it 

has only magnitude and does not depend on how the coordinates are chosen. It is represented as 

f(x). 

In the above mentioned examples density of gas, temperature of air and pressure of air at a given 

point are clearly function of position and does not consider coordinates. Hence they are scalar 

fields. Scalar fields are represented by drawing surfaces.  

Ex: density of gas, temperature and pressure of air, Electrostatic potential   

In the above mentioned examples density of gas, temperature of air and pressure of air at a given 

point are clearly function of position and does not consider coordinates. Hence they are scalar 

fields. Scalar fields are represented by drawing surfaces.  

Electrostatic potential around a charged body is also a scalar field. Each surface that passes 

through all the points having same scalar quantity is known as equal or level surface. Equipotential 

surface is one such surface. It passes through all the points at same electric potential around a 

charged body   
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Vector field: 

Vector field is a region of space where each point is associated with vector point function i,e, it 

has magnitude and direction; both of which change from point to point. It is represented as v(x) 

At any instant, velocity vector of water flow, velocity vector of a rotating body, force acting on a 

test charge in the electric field, intensity of magnetic field around a bar magnet, etc are the 

examples for vector field.  

Vector field is represented by vector lines, lines of surface. The tangent at a vector line gives the 

direction of the vector at that point 

         Scalar field Vector field Vector field 

There are two mathematically important properties of vector field namely circulation and flux. 

They are frequently used to describe the laws of electricity and magnetism.  

Circulation: For any vector field the circulation around any imaginary closed curve is defined as 

the product of average tangential component of the vector and circumference of the loop 

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑣 1. 𝑑𝑙⃗⃗  ⃗
1 + 𝑣 2. 𝑑𝑙⃗⃗  ⃗

2 + 𝑣 3. 𝑑𝑙⃗⃗  ⃗
3 + − − −= ∮𝑣 𝑖. 𝑑𝑙⃗⃗  ⃗

𝑖

Flux: For an arbitrary closed surface, the flux (either outward or inward) is the product of average 

normal component of the vector and surface area. The outward flux is positive and inward flux is 

negative. 

𝑓𝑙𝑢𝑥 = 𝑣 1. 𝑑𝑆⃗⃗⃗⃗ 
1 + 𝑣 2. 𝑑𝑆⃗⃗⃗⃗ 

2 + 𝑣 3. 𝑑𝑆⃗⃗⃗⃗ 
3 + − − −= ∮𝑣 𝑖 . 𝑑𝑆⃗⃗⃗⃗ 

𝑖

Vector Calculus 

Vector calculus includes both vector functions (vector fields) and scalar functions (Scalar fields). 

Vector calculus owes much of its importance in engineering and physics to the gradient, 

divergence and curl. Some of the vector fields (not all) can be obtained from scalar fields by 

performing specific operations on them. 

When field vary with respect to time, we describe the variation by taking their derivatives with 

respect to time. Similarly, if a point function in the field varies with respect to position, we can 

describe the variations with respect to position. This is nothing but directional differentiation. 

+
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Consider the case of variation of temperature at different positions around a red hot iron sphere. It 

is decreasing along x, y and z axes. The rate at which it decreases along x – axis does not depend 

on y & z axes. Similarly the decrease rate along remaining 2 axes also independent of other axes. 

Let T(x,y,z) be the temperature (scalar) at a point in space. Then 
𝜕𝑇

𝜕𝑥
,
𝜕𝑇

𝜕𝑦
 & 

𝜕𝑇

𝜕𝑧
 denote the rate of 

change of T along x,y & z axes 

Now consider two points P and Q in space at which the temperature is T1(x,y,z) and T2( x+dx, 

y+dy, z+dz) then the variation of temperature from P to Q is given by 

𝑑𝑇 =
𝜕𝑇

𝜕𝑥
𝑑𝑥 +

𝜕𝑇

𝜕𝑦
𝑑𝑦 +

𝜕𝑇

𝜕𝑧
𝑑𝑧 − − − −(1) 

Here we introduce an operator called ‘del operator’ () as 

∇= (
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) 

and eq (1) is rewritten as 

𝑔𝑎𝑟𝑑𝑇 = ∇𝑇 =
𝜕𝑇

𝜕𝑥
𝑖 +

𝜕𝑇

𝜕𝑦
𝑗 +

𝜕𝑇

𝜕𝑧
𝑘 

DEL operator 

Like any other operators in mathematics like addition, subtraction, differentiation, summation, 

integration etc,  (del) is also an operator. It is a vector operator which operates on both scalars 

and vectors. It is written as 

∇⃗⃗ = (
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) 

 alone, it means nothing. When multiplied by a scalar, then also it is nothing. If a scalar is 

multiplied by  then it carries a meaning. In ordinary algebra 

TA=AT 

Where T is scalar and A is vector. But the same is not true in the case of  operator 

i,e      𝑇∇≠ ∇𝑇 

 obeys the same convention as the derivative notation. What is to be differentiated must be placed 

on the right side of the. When operated on scalar and vector we obtain three parameters namely 

gradient, divergence and curl. 

x

y

z

P

Q
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Note: 

  Operator is a vector. When a vector is multiplied by a scalar, the resultant is vector. Multiplying vector by

another vector via dot product yields a scalar and multiplying a vector by a vector via cross product gives a

vector quantity.

 Similarly  gives a vector quantity (T-grad) if multiplied with a scalar T; scalar (.ℎ⃗ -Div) if operated on a

vector ℎ⃗  by dot product; and a vector ( ∇ × ℎ⃗ - curl) if operated by cross product

Gradient of scalar field 

Gradient at any point in the scalar field is equal to the rate of change of scalar along the normal to 

the surface at that point. If f(x,y,z) is scalar point function then 

𝑔𝑟𝑎𝑑 𝑓 = ∇𝑓 

𝑔𝑟𝑎𝑑 𝑓 = ∇𝑓 = (
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) 𝑓 

Explanation: 

Consider the case of temperature variation around a red hot iron block (as mentioned above). The 

decrease in the temperature along any direction represents the gradient (directional differentiation). 

As we move away from the block, temperature keeps decreasing gradually. This is nothing but 

negative gradient. On the other hand, if we move towards the block, temperature increases and 

hence the gradient is positive. 

Note: Equation (1) can be written as 

𝑑𝑇 = (
𝜕𝑇

𝜕𝑥
𝑖 +

𝜕𝑇

𝜕𝑦
𝑗 +

𝜕𝑇

𝜕𝑧
𝑘) . (𝑑𝑥𝑖 + 𝑑𝑦𝑗 + 𝑑𝑧𝑘) 

𝑑𝑇 = ∇𝑇. 𝑑𝑟 = |∇𝑇||𝑑𝑟|𝑐𝑜𝑠𝜃 

Here, T is gradient, dr is position vector and  is the angle between them. According to this 

equation  

i. If =0,  then Tis positive and dT is maximum, ie, gradient points in the direction of

maximum increase of scalar function T

ii. If  = 180, then Tis negative. T decreases in the direction of T

Physical significance 

i. Gradient of a scalar field is a vector. It is directed along the increasing scalar field

ii. In the case of red hot iron sphere 𝛻𝑇 increases as we move towards the sphere. Hence

T(x,y,z) also increases

iii. If T(x,y,z) is a continuously differentiable real value function like temperature around the

red hot iron sphere, then 𝛻𝑇 ≠ 0
iv. Electric field is actually negative gradient of potential

v. There is no meaning for gradient of a vector

There exist electrostatic potential (V) and electric field intensity (E) around a charged body. From 

the fundamentals of electrostatics, we have learnt that potential and electric intensity are related as 

(along x-axis) 
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𝐸⃗ = − (
𝜕𝑉

𝜕𝑥
𝑎̂𝑥) 

In 3-d Cartesian system 

𝐸⃗ = −(
𝜕𝑉

𝜕𝑥
𝑖 +

𝜕𝑉

𝜕𝑦
𝑗 +

𝜕𝑉

𝜕𝑧
𝑘) = −∇𝑉 

Electric intensity is also called as “negative gradient of electric potential”. The negative sign 

indicates that the potential decreases in the direction of electric field intensity. If the body is 

positively charged electric intensity is radially outward and as we move away from charged body 

potential decreases as shown in the following figure.    

Divergence of a vector field 

From the discussion of gradient operation we came to know that when vector operator  

operates on a scalar, it yields a vector quantity called gradient. Gradient simply represents the 

maximum rate of increase of scalar field and directed normal to the surface. Now the question is, 

can we do any algebra with the vector?. If the answer is yes, what will be the resultant 

quantity?. Here is the explanation.  

One can take the dot product of  and a vector v (or h). The resultant is termed as divergence and 

it is always a scalar 

Divergence of a vector point function is the dot product of  and a vector. If h(x,y,z) is a vector 

point function in 3-D space, then its divergence is given by 

𝑑𝑖𝑣𝑉 = 𝛻. ℎ = (
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) . (ℎ𝑥𝑖̂ + ℎ𝑦𝑗̂ + ℎ𝑧𝑘̂) 

It is also defined as the surface integral of the flux per unit volume as dV tends to zero. Hence 

divergence of a vector is also written as 

∇⃗⃗ . ℎ⃗ = lim
𝑑𝑉→0

∮ ℎ⃗ . 𝑑𝑆⃗⃗⃗⃗ 

𝑑𝑉
Explanation: 

Consider a vector field, say flow of water. Imagine a closed surface in this field and assume that 

you are sitting inside the surface. Now ask a question; whether I am losing ‘something’ from 

inside? (or, does the outflow is more than inflow?). It can be decided by looking at the velocity 

vectors normal to the surface. If there are more outward velocity vectors than inward then, yes, 

you are losing something. In this context we can define a quantity called flux which is intimately 

related to divergence. 

E 
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The amount of outward (or inward) flow of fluid through the surface per unit time is known as 

“flux”. It is calculated by multiplying the average normal component and the surface area (dot 

product). 

𝑓𝑙𝑢𝑥 = (normal component). (surface area) 

In the above situation, consider a small surface area which encloses volume dV. The net out flow 

over this surface is obtained by integrating the flux over the surface (surface integral).  The surface 

integral of the flux per unit volume as dV tends to zero is known as divergence. Hence divergence 

of a vector is also written as 

∇⃗⃗ . ℎ⃗ = lim
𝑑𝑉→0

∮ ℎ⃗ . 𝑑𝑆⃗⃗⃗⃗ 

𝑑𝑉
If 𝐸⃗  is the vector field (electric field), 𝑑𝑆⃗⃗⃗⃗  is the area vector and V  is the volume enclosed by the

surface then 

∇⃗⃗ . 𝐸⃗ =
∮ 𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ 

𝑉

Physical significance 

i. Divergence of a vector represents ‘how much of the vector filed is flowing out’ (or flowing

in) over a surface area. It is always associated with flux.

ii. If the net flow is outward then divergence is positive. If the net flow is inward then the

divergence is negative

iii. The point of positive divergence is “source” and the point of negative divergence is “sink”

iv. If the flow is steady (net inflow is equal to out flow) then divergence is ZERO, 𝛻. ℎ = 0.

In such case the vector function is termed as incompressible  or solenoidal

v. There is no meaning for divergence of a scalar

Curl of a vector field 

As mentioned earlier (in vector field section), circulation is one of the two mathematically 

important properties of vector field. In the case of magnetic field around a straight conductor 

carrying current or whirlpool in which water mass is rotating, vector function is rotating about a 

fixed axis. The term circulation is associated with such kind of rotating vector fields and the 

rotational effect is measured in terms of “curl 
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Curl of a vector point function is the cross product of  and a vector. If 𝐵⃗ (𝑥, 𝑦, 𝑧)is a vector point 

function in 3-D space, then its curl is given by 

curl 𝐵⃗ = ∇ × 𝐵⃗ = ||

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧

||

Curl of a vector is also a vector whose direction is obtained by right hand rule( perpendicular to 

the plane containing the two vectors namely  and 𝐵⃗ ) 

Curl is the measure of net circulation and in this context we can write curl as 

𝑐𝑢𝑟𝑙𝐵⃗ = ∇ × 𝐵⃗ = lim
𝑆→0

(
∮ 𝐵⃗ . 𝑑𝑙

𝑆 
) 

It is explained as follows 

Consider the case of magnetic field produced by a straight conductor carrying current. Imagine a 

loop in this field and draw tangents at different points on the loop. When you observe these 

tangents, you feel they are rotating (circulating) about a particular axis. Take the integral of these 

components all the way around the loop. The integration gives circulation of the vector field 

around the loop. 

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = ∮ 𝐵⃗ . 𝑑𝑙 

The measure of net circulation is known as curl. Circulation goes on decreasing as we reduce the 

size of the loop and area enclosed by the loop(s). Finally it reaches a limiting value when the area 

approaches to zero. In this context we can write curl as 

𝑐𝑢𝑟𝑙𝐵⃗ = ∇ × 𝐵⃗ = lim
𝑆→0

(
∮ 𝐵⃗ . 𝑑𝑙

𝑆 
) 

Physical Significance 

i. Curl of a vector represents the rotational effect of the vector field.

ii. If the field is uniform (like electric field due to infinite charge) the curl is zero. A vector

field is said to be irrotational if the curl is zero ie, 𝛻 × 𝐵⃗ = 0

iii. For certain vector fields, (non uniform fields) the curl of a vector is non-zero, meaning

thereby that they have the capability to rotate.

iv. Curl is a measure of the vorticity of the field at the point (a measure of the rate of rotational

spin in a fluid)

v. There is no meaning for curl of a scalar

Types of Integrations 

Integration is a process of bringing things together which were lying between two limits. These 

things may be spread over a line or surface or in space. Accordingly we have line integral, surface 

integral & volume integral 

B 

I 
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Line integral 

A Line integral is an integration of a function along a curve. One can integrate scalar valued 

functions (like mass of a wire) or vector valued functions (like work done by a force) along a curve 

In the following  fig, work done by a force F in displacing an object along the path CD is calculated 

using line integration as follows 

𝑊 = 𝐹1. 𝑑𝑙1 + 𝐹2. 𝑑𝑙2 + 𝐹3. 𝑑𝑙3 +  − −= ∫ 𝐹. 𝑑𝑙
𝐷

𝐶

 

Surface integral  

In Surface integral, we add up the vector components that are flowing through surface area. Like 

line integral stands for work done, surface integral represents flux. Hence it is also known as flux 

integral 

In the following fig, flux is calculated over a closed surface by dividing it into small surfaces each 

of area dSi 

𝑓𝑙𝑢𝑥 (𝛷) = 𝑣 1. 𝑑𝑆⃗⃗⃗⃗ 
1 + 𝑣 2. 𝑑𝑆⃗⃗⃗⃗ 

2 + 𝑣 3. 𝑑𝑆⃗⃗⃗⃗ 
3 +  − −−= ∮𝑣 𝑖 . 𝑑𝑆⃗⃗⃗⃗ 

𝑖

Volume integral  

A volume integral refers to an integral over a 3-D domain, that is, it is a special case of multiple 

integrals (Wikipedia definition). It is used to find the volume of solids, volume of revolution, etc 

𝑉 = ∮𝐴𝑑𝑉 

Gauss divergence theorem: 

This theorem was originally started from the study of fluid and It helps to convert volume integral 

into surface integral 

Statement: 

The surface integral of flux of a vector field 𝐸⃗  (say electric field) over any closed surface S is equal 

to volume integral of the divergence of the same field. The mathematical form of divergence 

theorem is as follows 

∮ 𝑬⃗⃗ . 𝒅𝑺⃗⃗⃗⃗  ⃗ = ∮(𝜵. 𝑬⃗⃗ )𝒅𝑽

10
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Proof: 

Consider a vector field 𝐸⃗  in space. Take many adjoining incremental volumes of any shape, we 

form a macroscopic volume V with enclosing surface S as shown in Fig. However, each interior 

common surface between incremental volumes has the flux leaving one volume (positive flux 

contribution) just entering the adjacent volume (negative flux contribution) as in Fig.  The net 

contribution to the flux is zero for all interior surfaces. Nonzero contributions to the flux are 

obtained only for those surfaces which bound the outer surface S of V (shaded area) 

The total flux is obtained by adding all contributions from each differential volume. Let dS1, dS2, 

dS3, etc are the surface areas of the faces of small incremental volumes. The net flux is given by 

∮𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ = ∮ 𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ 
1 + ∮ 𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ 

2 +∮ 𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ 
3 + − −

∮𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ = ∑∮𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ 
𝑖

𝑁

𝑖=1

∮𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ = ∑𝑉
∮ 𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ 

𝑖

𝑉

𝑁

𝑖=1

− − − −(1) 

By definition of divergence, 

∇⃗⃗ . 𝐸⃗ =
∮ 𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ 

𝑉
− − − −(2) 

From (1) and (2) we get 

∮𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ = ∑𝑉(∇⃗⃗ . 𝐸⃗ )

𝑁

𝑖=1

− − − −(3) 

In limiting case we can write 

∑𝑉

𝑁

𝑖=1

= ∮𝑑𝑉 

Hence equation (3) becomes 

∮ 𝑬⃗⃗ . 𝒅𝑺⃗⃗⃗⃗  ⃗ = ∮(𝜵⃗⃗ . 𝑬⃗⃗ )𝒅𝑽

11
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Stokes’ Theorem 

This theorem helps us to convert line integral into surface integral 

Statement:  

The line integral (or circulation) of a vector field F around a fixed macroscopic path is equal to the 

surface integral of curl F over a surface bounded by the path. 

∮ 𝑭⃗⃗ . 𝒅𝒍⃗⃗⃗⃗ = ∮(𝜵⃗⃗ × 𝑭⃗⃗ )𝒅𝑺⃗⃗⃗⃗  ⃗

This theorem helps us to convert line integral into surface integral 

Maxwell’s Equations 

Introduction: 

Two branches of physics namely electricity and magnetism developed quite separately until 

Oerstead showed that a current carrying conductor can produce magnetic field around it(1820). 

With this discovery, a new branch called “electromagnetism” came into existence. It is indeed an 

amalgamation of three phenomena namely electrostatics, current electricity & magnetism. 

Oerstead, Ampère, Henry, Faraday and others have contributed to this area. The basic phenomena 

and the connection between the three disciplines were ultimately described by Maxwell (1831–

1879) in four famous equations popularly known as Maxwell’s equations.  

It is now time to discuss ‘God’s own equations’ (according to Boltzmann) and ‘most significant 

event of 19th century’ (according to Richard Feynman)- Maxwell’s equations. They are as 

important in electrodynamics as Newton’s laws of motion in classical mechanics 

Gauss's theorem in electrostatics (Maxwell's equation-I) 

Maxwell's first equation is derived immediately from Gauss's theorem in electrostatics as follows 

The surface integral of net flux is equal to (1/0) times the charge enclosed by the surface 

∮𝐸⃗ . 𝑑𝑆⃗⃗⃗⃗ =
1

𝜀0

(𝑞𝑒𝑛𝑐𝑙)

Using divergence theorem we can reduce this equation to 

∴ 𝜵⃗⃗ . 𝑫⃗⃗ = 𝝆
This is known as Maxwell’s 1st equation 

Here  is known as volume charge density and 𝐷⃗⃗  = 𝜀0 𝐸⃗  called displacement vector

Gauss theorem in magnetism (Maxwell equation –II) 

The Gauss theorem in magneto statics gives us the second Maxwell equation 

The net flux of the magnetic field through a closed surface is zero irrespective 

of whether it encloses any source or not  

∮𝐵⃗ . 𝑑𝑆⃗⃗⃗⃗ = 0

Again using divergence theorem we can reduce this equation to 

∴ 𝜵⃗⃗ . 𝑩⃗⃗ = 𝟎
This is known as Maxwell’s 2nd equation 
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Biot-Sovart law. 

Magnetic field produced by a current element is given by Biot-Sovart law. It states that 

The magnitude of  field produced at a point due to current carrying conductor is directly 

proportional to current in the conductor, length of the conductor, sine of the angle between line 

joining the point and direction of the current and inversely proportional to square of the distance 

𝑑𝐵 = (
𝜇0

4𝜋
)
𝐼𝑑𝑙 sin 𝜃

𝑟2

Biot Savart law is similar to Coulomb’s law. Both show linear relationship between source and 

field. Both are inverse square laws. The main difference is that Coulomb’s law does not speak 

about the direction of the field. 

Current element:  

The product of magnitude of current and small length of the conductor (Also called as differential 

length) through which current flows is known as current element (Idl). As charge is for electric 

field, current element is for magnetic field. 

Law of Electromagnetic induction (Maxwell equation –III) 

Maxwell’s 3rd equation is a direct consequence of laws of Electromagnetic induction. Law of EMI 

states that  

An emf is induced in a coil due to continuous change in the magnetic flux linked with the coil and 

magnitude of induced emf (e) is directly proportional to rate of change of flux () 

𝑒 = −
𝑑Φ

𝑑𝑡
From this equation we can show that the induced electric field E is 

(𝛻 × 𝐸⃗ ) = −
𝜕𝐵⃗ 

𝜕𝑡
This is Maxwell’s 3rd equation 

Continuity:  

According to Maxwell “A quantity is said to be a continuous function of its variables when, if the 

variables alter continuously, the quantity itself alters continuously”. 

We shall now find the continuity of current in terms of current density 

Continuity of Current: 

Statement: The total current flowing out of some volume is equal to the rate of decrease of charge 

within that volume. The mathematical form of this statement is 

13
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𝛁. 𝑱 = −
𝝏𝝆𝒗

𝝏𝒕

This is the equation of continuity. 

LHS represents the divergence of J. If the divergence of J is positive, then more charge is leaving 

than that entering the specified volume. If charge is leaving, then the amount of charge within the 

volume must be decreasing. This is exactly what the RHS is. 

Ampere’s Circuital theorem 

Ampere’s circuital law is very similar to the Gauss’ Law in electrostatics. 

The line integral of tangential component of the magnetic field strength around a closed path 

is equal to0 times  the current enclosed by the path. 

∮ 𝐵⃗ . 𝑑𝑙⃗⃗  ⃗ = 𝜇0𝐼 − − − −(1)

It can also be written as 

∮ 𝐻⃗⃗ . 𝑑𝑙⃗⃗  ⃗ = 𝐼 − − − −(1)

This theorem fails in the case of varying fields. Look at the case of parallel plate capacitor 

connected to AC source. Imagine a pot shaped loop around one of the plate. When Ampere’s law 

is applied over loop L2 the RHS of eq (1) becomes zero. But actually there is magnetic field in the 

gap between the plates. In order to explain this contradiction Maxwell introduced Displacement 

current 

Displacement current (ID) 

While correcting the Ampere’s law for time varying fields, Maxwell introduced a new quantity 

called displacement current density (JD). This is 3rd kind of current density. [The other two are 

conduction current density (J=E) and convection current density (J=vV)].It leads to a new type 

of current called displacement current (ID).  

Displacement current is defined as the current produced by time varying electric fields 

It is same as conduction current (I) arising due to flow of charges in conducting wire and capable 

of producing all the effects. The expression for ID is obtained as follows 

The electric field between two plates of a parallel plate capacitor is 

𝐸 =
𝜎

𝜀0
=

𝑞

𝐴𝜀0

Flux due to this field is 

Φ = 𝐸𝐴 =
𝑞𝐴

𝐴𝜀0
=

𝑞

𝜀0

𝑑Φ

𝑑𝑡
=

1

𝜀0

𝑑𝑞

𝑑𝑡
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𝑑𝑞

𝑑𝑡
= 𝜀0

𝑑Φ

𝑑𝑡
LHS of the above equation is nothing but electric current. Hence RHS also shall represent current 

and it is known as displacement current (ID) 

𝐼𝐷 = 𝜀0

𝑑𝛷

𝑑𝑡
This is the expression for displacement current 

Ampere-Maxwell law (Maxwell equation –IV) 

The modified Ampere’s law, now called as Ampere-Maxwell law, is therefore 

∮𝑯.𝒅𝒍 = 𝑰 + 𝑰𝑫 

Here I = conduction current; ID = displacement current 

Using Stokes’ theorem we can reduce this equation to 

𝛻 ⃗⃗  ⃗ × 𝐻⃗⃗ = 𝐽 

This is Maxwell’s 4th equation 

Difference between ID and I 

i. Displacement current is due to time varying fields where as conduction current is due

to steady fields

ii. Displacement current does not require any material medium for the flow whereas

conduction current requires conducting wires for the flow

iii. Displacement current can exists even in free space (Vacuum) whereas conduction

current do not have this privilege

iv. Displacement current is basically rate of change of electric flux whereas conduction

current is the rate of flow of charge

Maxwell’s equations in statement form (only for steady field) 

Maxwell’s equation-I 

Divergence of electric flux density over a closed surface is equal to the volume charge density 

enclosed by the surface.  

∇. 𝐷⃗⃗ = 𝜌
Maxwell’s equation-II 

Divergence of magnetic flux density over a closed surface is always zero 

∇. 𝐵⃗ = 0 

Maxwell’s equation-III 

Curl of the induced electric filed is equal to negative rate of change of magnetic flux density 

(∇ × 𝐸⃗ ) = −
𝜕𝐵⃗ 

𝜕𝑡

Maxwell’s equation-IV 

The curl of magnetic field induced is equal to current density. 

∇ ⃗⃗  ⃗ × 𝐻⃗⃗ = 𝐽 
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Steady Field 

Eq.No Point form Source 

1 𝛻. 𝐷⃗⃗ = 𝜌 Gauss theorem in 

electrostatics 

2 𝛻. 𝐵⃗ = 0 Gauss theorem in 

Magnetism (Non-

existence of monopoles) 

3 (𝛻 × 𝐸⃗ ) = 0 Laws of EMI 

4 𝛻 ⃗⃗  ⃗ × 𝐻⃗⃗ = 𝐽 Ampere’s circuital law 

Plane EM waves 
Introduction: 

Two most significant and remarkable outcomes of Maxwell’s equations are (i) existence of 

displacement current (ii) prediction of electromagnetic wave (EM wave).  

When E and H vary in two mutually perpendicular planes then the net energy propagates in the 

form of a wave in a direction perpendicular to both E & H. This wave is known as uniform plane 

wave 

A uniform plane wave is one  

i. Which contain both electric field (E) and magnetic field (H) in transverse planes.

ii. The normal to the transverse plane represents the direction of propagation.

iii. The variation of E & H is only along the direction of propagation – ie, normal to the

transverse plane and remain same in their respective planes.

We shall now obtain an equation for EM waves using Maxwell’s equations. 

Expression for EM wave 

Consider Maxwell’s equation in homogeneous medium 

(𝛻 × 𝐸⃗ ) = −
𝜕𝐵⃗ 

𝜕𝑡
= −

𝜇𝜕𝐻⃗⃗ 

𝜕𝑡

𝛻 × 𝛻 × 𝐸⃗ = −
𝜇𝜕(𝛻 × 𝐻⃗⃗ )

𝜕𝑡
But 𝛻 × (𝛻 × ℎ) = 𝛻(𝛻. ℎ) − 𝛻2ℎ

∴ ∇(∇. 𝐸⃗ ) − ∇2𝐸⃗ = −
𝜇𝜕(∇ × 𝐻⃗⃗ )

𝜕𝑡

But ∇. 𝐷⃗⃗ = 𝜌𝑣 ⇒ ∇. 𝐸⃗ =
𝜌𝑣

𝜀

∴ 𝛻 (
𝜌𝑣

𝜀
) − 𝛻2𝐸⃗ = −

𝜇𝜕(𝛻 × 𝐻⃗⃗ )

𝜕𝑡

Put 𝛻 × 𝐻⃗⃗ = 𝐽 +
𝜀𝜕𝐸⃗ 

𝜕𝑡
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𝛻 (
𝜌𝑣

𝜀
) − 𝛻2𝐸⃗ = −𝜇

𝜕

𝜕𝑡
(𝐽 +

𝜀𝜕𝐸⃗ 

𝜕𝑡
) = −𝜇

𝜕𝐽 

𝜕𝑡
− 𝜇𝜀

𝜕2𝐸⃗ 

𝜕𝑡2

𝛻2𝐸⃗ − 𝜇𝜀
𝜕2𝐸⃗ 

𝜕𝑡2 = 𝜇
𝜕𝐽 

𝜕𝑡
+ 𝛻 (

𝜌𝑣

𝜀
) − − − −(1) 

In free space, J=0 and =0. Hence 

𝛻2𝐸⃗ − 𝜇0𝜀0

𝜕2𝐸⃗ 

𝜕𝑡2
= 0 − − − −(2)

Equation (2) is in the form wave equation travelling with velocity v 

∇2𝑓 −
1

𝑣2

𝜕2𝑓

𝜕𝑡2
= 0 − − − −(3)

Hence we conclude that equation (2) represents the uniform plane electromagnetic wave travelling 

in free space. Its velocity is given by 

𝑣 = 𝑐 =
1

√𝜇0𝜀0

− − − −(4) 

An EM wave propagates along x- axis in homogeneous medium along with E parallel to y- axis 

and B along z- axis. Both E and B shall vary along x-axis. Their instantaneous values are given by 

𝐸(𝑥, 𝑡) = 𝐸0 sin(𝑘𝑥 − 𝜔𝑡)𝑎̂𝑦

𝐵(𝑥, 𝑡) = 𝐵0 sin(𝑘𝑥 − 
𝜔𝑡)𝑎̂𝑧 Here K = wave number;  = angular frequency 

Properties 

• EM waves consists of vibrating electric and magnetic fields. Hence they are transverse

• They travel with a speed of 3  108m/s in free space or vacuum

• They transmit energy through matter or across space.

• They undergo reflection, refraction, diffraction, polarization

• Photoelectric effect, Compton effect and pair production are some exclusive properties of

EM waves

• Although all electromagnetic waves travel at the same speed across space, they may differ

in their wavelengths, frequencies, and energy levels

• They exert pressure on the surface of incidence. It is called radiation pressure
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Polarization 

The electric component of an electromagnetic plane wave can oscillate in any direction 

perpendicular to the direction of wave propagation. Suppose that the wave is propagating in the  x-

direction, the electric field can oscillate in any direction that lies in the y-z-plane. Such wave is 

said to  be Un polarized 

If the electric field is restricted to any one direction then the wave is said to be polarized  

There are three types of polarization namely 

 linear polarization,

 circular polarization

 elliptical polarization

i. When the orientation of the E-field vector does not change, we say that the wave is linearly

polarized. Its tip along a particular axis describes a straight line. Hence it is called linear

polarization

ii. If we combine two linearly polarized waves of equal amplitude of E vector having a phase

difference of /2; one polarized in the y -direction, and one in the z-direction, then we

obtain a circularly polarized wave. The tip of the resultant E vector traces out a circle in

the plane perpendicular to direction of propagation. Hence the name is circular polarization

iii. If we combine two linearly polarized waves of unequal amplitude of E vector having a

phase difference of /2; one polarized in the y -direction, and one in the z-direction, then

we obtain a elliptically polarized wave. The tip of the resultant E vector traces out an ellipse

in the plane perpendicular to direction of propagation. Hence the name is circular

polarization
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Solved Numericals 

1. Find the gradient of f(x,y)=xy2+x3y at the points (1,2)

Solution: 

∇𝑓 = (
𝜕(𝑥𝑦2 + 𝑥3𝑦)

𝜕𝑥
𝑖 +

𝜕(𝑥𝑦2 + 𝑥3𝑦)

𝜕𝑦
𝑗) 

∇𝑓 = (𝑦2 + 3𝑥2𝑦)𝑎̂𝑥 + (2𝑥𝑦 + 𝑥3)𝑎̂𝑦

Put x =1, y=2,  

∇𝑓 = (22 + 3(2))𝑖 + (13 + 4)𝑗 = 10𝑖 + 5𝑗

∇𝑓 = 10𝑖 + 5𝑗 = (10,5) 

2. The force in an electric field is f(x,y)= x2 - y2 . Find the gradient of f at P(-1,3)

Solution: 

∇𝑓 = (
𝜕(𝑥2 − 𝑦2)

𝜕𝑥
𝑖 +

𝜕(𝑥2 − 𝑦2)

𝜕𝑦
𝑗) 

∇𝑓 = (2𝑥𝑖 − 2𝑦𝑗) 

∇𝑓 = (2(−1)𝑖 − 2(3)𝑗) = (−2,−6) 

3. Let a vector field be 𝑷⃗⃗ = 𝒙𝟐𝒊 + 𝒚𝟐𝒋 + 𝒛𝟐𝒌. Find the divergence

Solution: 

∇. 𝑃⃗ = (
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘) . (𝑥2𝑖 + 𝑦2𝑗 + 𝑧2𝑘)

∇. 𝑃⃗ =
𝜕𝑥2

𝜕𝑥
+

𝜕𝑦2

𝜕𝑦
+

𝜕𝑧2

𝜕𝑧

∇. 𝑃⃗ = 2𝑥 + 2𝑦 + 2𝑧 = 2(𝑥 + 𝑦 + 𝑧) 

4. Let the velocity vector is 𝒗⃗⃗ = 𝒚𝒂̂𝒙. Show that the flow is incompressible

Solution: 

The flow is said to be incompressible only if ∇. 𝑣 = 0 

∇. 𝑣 = (
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘) . (𝑦𝑖) 

∇. 𝑣 =
𝜕𝑦

𝜕𝑥
= 0 

Hence the flow is incompressible 

5. Let the vector point function is 𝑷⃗⃗ = 𝒚𝒛𝒊 + 𝒛𝒙𝒋 + 𝒙𝒚𝒌 Show that it is solenoidal

Solution: 

Condition for solenoidal  ∇. 𝑃⃗ = 0 

∇. 𝑃⃗ = (
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘) . (𝑦𝑧𝑖 + 𝑧𝑥𝑗 + 𝑥𝑦𝑘) 

∇. 𝑃⃗ = (
𝜕(𝑦𝑧)

𝜕𝑥
+

𝜕(𝑧𝑥)

𝜕𝑦
+

𝜕(𝑥𝑦)

𝜕𝑧
) = 0 

Hence the given vector is solenoidal 
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6. Let the vector point function is 𝑷⃗⃗ = 𝒚𝒛𝒊 + 𝒛𝒙𝒋 + 𝒙𝒚𝒌 . Find the curl. Is it rotational or

irrotational? 

Solution: 

curl 𝑃⃗ = |

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑦𝑧 𝑧𝑥 𝑥𝑦

| 

𝑐𝑢𝑟𝑙 𝑃⃗ = 𝑖 (
𝜕(𝑥𝑦)

𝜕𝑦
−

𝜕(𝑧𝑥)

𝜕𝑧
) − 𝑗 (

𝜕(𝑥𝑦)

𝜕𝑥
−

𝜕(𝑦𝑧)

𝜕𝑧
) + 𝑘 (

𝜕(𝑧𝑥)

𝜕𝑥
−

𝜕(𝑦𝑧)

𝜕𝑦
) 

𝑐𝑢𝑟𝑙 𝑃⃗ = 𝑖(𝑥 − 𝑥) − 𝑗(𝑦 − 𝑦) + 𝑘(𝑧 − 𝑧) = 0 

Curl is zero. Hence the given vector field is irrotational 

7. Show that the electric field represented by a vector 𝑬⃗⃗ = (𝒛𝟐 + 𝟐𝒙 + 𝟑𝒚)𝒊 + (𝟑𝒙 + 𝟐𝒚 +

𝒛)𝒋 + (𝒚 + 𝟐𝒛𝒙)𝒌 is irrotational 

Solution: 

curl 𝑃⃗ = ||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

(𝑧2 + 2𝑥 + 3𝑦) (3𝑥 + 2𝑦 + 𝑧) (𝑦 + 2𝑧𝑥)

||

curl 𝑃⃗ = 𝑖 (
𝜕(𝑦 + 2𝑧𝑥)

𝜕𝑦
−

𝜕(3𝑥 + 2𝑦 + 𝑧)

𝜕𝑧
) − 𝑗 (

𝜕(𝑦 + 2𝑧𝑥)

𝜕𝑥
−

𝜕(𝑧2 + 2𝑥 + 3𝑦)

𝜕𝑧
)

+ 𝑘 (
𝜕(3𝑥 + 2𝑦 + 𝑧)

𝜕𝑥
−

𝜕(𝑧2 + 2𝑥 + 3𝑦)

𝜕𝑦
) 

curl 𝑃⃗ = 𝑖(1 − 1) − 𝑗(2𝑧 − 2𝑧) + 𝑘(3 − 3) = 0 

Hence the given field is irrotational 

8. The flux density is given as 𝑫⃗⃗ =
𝟏

𝒛𝟐 (𝟏𝟎𝒙𝒚𝒛𝒂̂𝒙 + 𝟓𝒙𝟐𝒛𝒂̂𝒚 + (𝟐𝒛𝟑 − 𝟓𝒙𝟐𝒚)𝒂̂𝒛)  in cartesian

coordinates. Find the divergence at P(-2,3,5) 

Solution: 

In Cartesian coordinate system divergence is given by 

∇. 𝐷⃗⃗ =
𝜕𝐷𝑥

𝜕𝑥
+

𝜕𝐷𝑦

𝜕𝑦
+

𝜕𝐷𝑍

𝜕𝑧

∇. 𝐷⃗⃗ =
1

𝑧2
(
𝜕(10𝑥𝑦𝑧)

𝜕𝑥
+

𝜕(5𝑥2𝑧)

𝜕𝑦
+

𝜕(2𝑧3 − 5𝑥2𝑦)

𝜕𝑧
) 

∇. 𝐷⃗⃗ =
𝑦𝑧

𝑧2

𝜕(10𝑥)

𝜕𝑥
+

𝑥2𝑧

𝑧2

𝜕(5)

𝜕𝑦
+

1

𝑧2

𝜕(2𝑧3 − 5𝑥2𝑦)

𝜕𝑧

∇. 𝐷⃗⃗ =
10𝑦

𝑧
+ 0 + 2 + 10(

𝑥2𝑦

𝑧3
) 

Put P(-2,3,5) 

∇. 𝐷⃗⃗ = 6 + 2 + 0.96

∇. 𝐷⃗⃗ = 8.96 C/m3 

9. Find the div and curl of D if 𝑫⃗⃗ = 𝒙𝟐𝒚𝒊 − (𝒛𝟑 − 𝟑𝒙)𝒋 + 𝟒𝒚𝟐𝒌
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∇. 𝐷⃗⃗ =
𝜕𝐷𝑥

𝜕𝑥
+

𝜕𝐷𝑦

𝜕𝑦
+

𝜕𝐷𝑍

𝜕𝑧

∇. 𝐷⃗⃗ =
𝜕(𝑥2𝑦)

𝜕𝑥
−

𝜕(𝑧3 − 3𝑥)

𝜕𝑦
+

𝜕4𝑦2

𝜕𝑧
= 2𝑥𝑦 

curl 𝐷⃗⃗ = ||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥2𝑦 −(𝑧3 − 3𝑥) 4𝑦2

||

𝑐𝑢𝑟𝑙 𝐷⃗⃗ = 𝑖 (
𝜕(4𝑦2)

𝜕𝑦
−

𝜕(−(𝑧3 − 3𝑥))

𝜕𝑧
) − 𝑗 (

𝜕(4𝑦2)

𝜕𝑥
−

𝜕(𝑥2𝑦)

𝜕𝑧
) + 𝑘 (

𝜕(−(𝑧3 − 3𝑥))

𝜕𝑥
−

𝜕(𝑥2𝑦)

𝜕𝑦
) 

𝑐𝑢𝑟𝑙 𝐷⃗⃗ = (8𝑦 + 3𝑧2)𝑖 + (3 − 𝑥2)𝑘

10. Calculate the divergence of the vector field 𝑭⃗⃗ = (𝟑𝒙 + 𝟐𝒛𝟐)𝒊 +
𝒙𝟑𝒚𝟐

𝒛
𝒋 − (𝒛 − 𝟕𝒙)𝒌 

∇. 𝐹 =
𝜕𝐹𝑥
𝜕𝑥

+
𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑍

𝜕𝑧

∇. 𝐹 =
𝜕(3𝑥 + 2𝑧2)

𝜕𝑥
+

𝜕 (
𝑥3𝑦2

𝑧
)

𝜕𝑦
+

𝜕(−(𝑧 − 7𝑥))

𝜕𝑧

∇. 𝐹 = 2 +
2𝑥3𝑦

𝑧
11. Write the position vector of a point P(2, -3,4) and hence find its magnitude and unit

vector. 

Solution: 

Position vector  𝑅⃗ = 2𝑎̂𝑥 − 3𝑎̂𝑦 + 4𝑎̂𝑧 

Magnitude |𝑅⃗ | = √22 + (−3)2 + 42 = √29 

Unit vector 

𝑎̂ =
𝑅⃗ 

|𝑅⃗ |
=

2𝑎̂𝑥 − 3𝑎̂𝑦 + 4𝑎̂𝑧

√29

12. Find the components and magnitude of 𝑹⃗⃗  with initial point P (3,4,-1) and terminal point

Q(4,7,3) 

Solution: 

Components are given by (𝑥2 − 𝑥1), (𝑦2 − 𝑦1), 𝑎𝑛𝑑 (𝑧2 − 𝑧1)

Components of 𝑅⃗  = (4 - 3),(7 – 4) and (3 – (-1)) 

Components of 𝑅⃗  = (1, 3, 4) 

Magnitude of 𝑅⃗ = √12 + 32 + 42 = √26 

13. Let 𝑷⃗⃗ = (𝟑, 𝟐, 𝟏) and 𝑸⃗⃗ = (𝟒, 𝟑, 𝟕). Find 𝑷 + 𝑸⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑷 − 𝑸⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝒂𝒏𝒅 𝟐𝑷 − 𝑸⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ . write the answers

in component form 

Solution: 

𝑃 + 𝑄⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (3 + 4, 2 + 3, 1 + 7) = (7,5,8)
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Component form is 𝑃 + 𝑄⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 7𝑎̂𝑥 + 5𝑎̂𝑦 + 8𝑎̂𝑧

𝑃 − 𝑄⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (3 − 4, 2 − 3, 1 − 7) = (−1,−1,−6)

Component form is 𝑃 − 𝑄⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −1𝑎̂𝑥 − 1𝑎̂𝑦 − 6𝑎̂𝑧

2𝑃 − 𝑄⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 2(3,2,1) − (4,3,7) = (6,4,2) − (4,3,7) = (2,1,−5)

Component form is 2𝑃 − 𝑄⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 2𝑎̂𝑥 + 1𝑎̂𝑦 − 5𝑎̂𝑧

14. If the components of 𝑷⃗⃗ , 𝑸⃗⃗  𝐚𝐧𝐝 𝑹⃗⃗  are (3,2,4), (-1,4,7) and (5,2,-2) then show that (𝑷 + 𝑸⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) +

𝑹⃗⃗ = 𝑷⃗⃗ + (𝑸 + 𝑹⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

Solution: 

𝑃 + 𝑄⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (3,2,4) + (−1,4,7) = (3 − 1, 2 + 4, 4 + 7) = (2,6,11)

(𝑃⃗⃗⃗⃗⃗+⃗⃗⃗ ⃗⃗𝑄⃗ ) + 𝑅⃗ = (2,6,11) + (5,2, −2) = (2 + 5, 6 + 2, 11 − 2)
(𝑃⃗⃗⃗⃗⃗+⃗⃗⃗ ⃗⃗𝑄⃗ ) + 𝑅⃗ = (7,8,9) − − − −(1)

𝑄⃗⃗⃗ ⃗⃗⃗+⃗⃗⃗⃗⃗𝑅⃗ = (−1,4,7) + (5,2, −2) = (−1 + 5, 4 + 2, 7 − 2) = (4,6,5)
𝑃⃗ + (𝑄 + 𝑅⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) = (3,2,4) + (4,6,5) = (3 + 4, 2 + 6, 4 + 5)

𝑃⃗ + (𝑄 + 𝑅⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) = (7,8,9) − − − −(2) 

From (1) and (2);  (𝑃 + 𝑄⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑅⃗ = 𝑃⃗ + (𝑄 + 𝑅⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ).   Hence the proof.

15. Two forces acting on a body are 𝑭𝟏
⃗⃗ ⃗⃗  = 𝟏𝟎𝒂̂𝒙 − 𝟐𝟎. 𝟒𝒂̂𝒚 + 𝟐𝒂̂𝒛 and  𝑭𝟐

⃗⃗ ⃗⃗  = 𝟏𝟓𝒂̂𝒙 − 𝟔. 𝟐𝒂̂𝒛.

Find the angle between them. 

Solution: 

𝐹 1. 𝐹 2 = (10 × 15) + (−20.4 × 0) + (2 × −6.2) =  −162.4

|𝐹 1| = √102 + 20.42 + 22 = 22.8

|𝐹 2| = √152 + 6.22 = 16.2

𝑐𝑜𝑠𝜃 =
𝐹 1. 𝐹 2

|𝐹 1||𝐹 2|
=

−162.4

22.8 × 16.2
= −0.439 

𝜃 = 𝑐𝑜𝑠−1(−0.439) = 1160

Questions for exercise 

1. Discuss scalar product and vector product along with examples

2. Explain the terms scalar field and vector field. Give examples

3. Explain scalar field in detail. Give examples

4. Explain in detail what vector field is. Give examples

5. Give expression for del operator. Is it a scalar or vector?

6. Define gradient of a scalar field. Give example. Write a note on its physical significance

7. What is divergence? Give the examples and expression for the same. discuss its physical

significance

8. When does the field is said to be incompressible  or solenoidal ?
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9. Define curl of a vector field. Give the examples and expression for the curl.  What is the

value of curl for irrotational filed?

10. Discuss the significance of curl

11. Discuss three different types of integrations

12. State and explain Gauss divergence theorem

13. Prove the Gauss divergence theorem

14. State and explain Stokes’ theorem

15. State and explain

i. Gauss theorem in electrostatics

ii. Gauss theorem in magnetism

And hence write Maxwell’s I and II equations 

16. State and explain Biot-Sovart law

17. State and explain faraday’s law of electromagnetic induction

18. State and explain Ampere’s circuital theorem. What is its limitation?

19. Explain the Maxwell’s correction to Ampere’s circuital law.

20. What is displacement current? Obtain the expression for the same

21. Discuss the Maxwell’s correction to Ampere’s circuital theorem and hence write Ampere-

Maxwell law

22. Distinguish between conduction current and displacement current

23. List the 4 Maxwell’s equations for steady field in vacuum

24. Give a brief account of Maxwell’s EM wave theory

25.Starting from Maxwell’s equations derive the 2nd order differential equation for EM wave

in terms of electric field

26. Starting from Maxwell’s equations obtain the wave equation and velocity of EM waves in

vacuum

27. Write a note on plane EM wave. Give the expression for Electric Field and Magnetic field

variations

28. Give the properties of EM wave

29. What is polarization of wave? Mention different types of polarization of EM waves

30. Explain plane polarized, circularly polarized and elliptically polarized waves
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* * *  END * * *
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SEMICONDUCTORS 
Introduction: 

Band theory of solids: Band theory of solids can explain the conductivity of conductors, 

insulators and semiconductors on energy gap between the bands. 

Classification of solids into conductors, insulators and semiconductors 

Based on electrical properties, solids can be classified as conductors, insulators and 

semiconductors. The order of magnitude of electrical conductivity serves as an indicator for the 

classification. There are few exceptions like conductors with incomplete inner orbits (like Sn, Mn, 

Zr, Rh etc.,) showing higher resistivity and narrow band gap semiconductors (like InSb, Bi2Te3 

etc.,) with exceptionally high conductivity. Hence conductivity alone should not be the basis for 

classification of solids. The temperature coefficient of resistivity helps us to classify and 

distinguish between highly conducting semiconductors and less conducting metals. The positive 

value of temperature coefficient of resistivity for conductors and negative value for 

semiconductors can be explained on the basis of band theory. 

Conductors: These are the solids which really conduct electricity. There are two types of energy 

bands in conductors depending on the electronic configuration of atoms. 

 

        In alkali metals and other metals having configuration ns1 or ns2np1 etc. having unpaired 

electrons in the outermost orbit of their atoms and hence the valence band is partially filled. So 

that, the electrons are easily excited to the higher levels in the same band. As a very large number 

of vacant levels exists, a large current can flow in conductors. 
In conductors having paired electrons in the outermost orbit the valence band is completely filled. 

So they should not conduct electric current. But it is observed that they also conduct electric 

current. This is because conduction band overlap with the valence band forming a composite band 

which is also partially filled as in the earlier case. In these conductors the forbidden gap/energy 

gap Eg = 0. 

Insulators: These are solids, which don’t conduct electric current. In insulators valence band is 

completely filled and conduction band is completely empty. They are separated by a very wide 

energy gap of the order of 6 eV (> 3 eV). 

 

               Since the valence band is completely filled, the electrons can’t move, so they cannot 

conduct electricity. The conduction band is completely empty having no electrons to move. To 
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excite electrons from valence band to conduction band, we require an electric field of the order of 

6x108 V/m. hence an insulator doesn’t conduct electric current under normal condition. 

Semiconductors: These are the solids, having conductivity less than the conductors and greater 

than the insulators. The energy band diagram of a semiconductor is similar to that of an insulator 

but, the valence band and conduction band are separated by a small narrow forbidden energy gap 

of the order of < 3 eV. 

 

 

Theory of semiconductors 

There are two types of semiconductors; pure and impure. The pure semiconductors are called 

intrinsic semiconductors and the impure semiconductors are called extrinsic semiconductors. 

 Extrinsic semiconductors are obtained by adding very small impurities to pure 

semiconductors in a controlled manner. This process is called “doping” and the impurity added is 

called “dopant”. Doped semiconductors are called ‘extrinsic semiconductors’. By virtue of small 

impurity in an extrinsic semiconductor, it posses high electrical conductivity. There are two types 

of extrinsic semiconductors are there. They are  

1. n - type semiconductors and 

2. p - type semiconductors. 

 

i. n - type semiconductors: If a donor impurity (pentavalent atoms like As, Sb) are added to a 

tetravalent pure semiconductor such as germanium or silicon the – ve charge carriers are 

more than the  + ve charge carriers. These types of semiconductors are called – ve type or n - 

type semiconductors. 

ii. p - type semiconductors: If an acceptor impurity (trivalent atoms like B) are added to pure 

semiconductors, the +ve charge carriers are more than the – ve charge carriers. These types 

of semiconductors are called + ve type or p-type semiconductors. 

Further due to thermal excitation, electron-hole pair is formed by the breaking of bonds, which 

become additional charge carriers. Thus both type charge carriers are observed in extrinsic 

semiconductors. However, the type of charge carriers which owe their formation due to only the 

thermal excitation and not due to doping are very small in number and they are called ‘minority 

carriers’. The other type charge carriers obtained due to both doping as well as thermal excitation 

are called ‘majority carriers’. 
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Significance of Fermi level 

According to Fermi-Dirac statistics, at temperature T = 0 K, all the energy levels below Fermi level 

are completely filled and the ones above are completely empty. Thus Fermi level (EF) at 0 K acts 

as a distinguished energy position between the filled and unfilled energy states. 

Fermi level in intrinsic semiconductor 

                                 
          Energy gap (Eg) is the difference between the bottom of the conduction band (Ec) and top 

of the valence band (Ev) i.e., Eg = Ec - Ev. For convention, the energy at the top of the valence band 

is taken as zero (i.e., Ev = 0) for reference. At T = 0 K, all the energy levels in the valence band are 

completely filled and all energy levels in the conduction band are completely empty. But at room 

temperature, due to thermal excitation, some of the electrons at the top of the valence band are able 

to jump the energy gap and occupy some energy levels at the bottom part of the conduction band. 

These electrons return soon to the vacant energy levels left in the valence band. The electrons in 

this set of energy levels continue to undergo excitation and de-excitation, and thus becomes 

conduction electrons. Based on this one can say that, conduction electrons between the energy 

levels in the bottom part of conduction band and the top portion of the valence band. Due to this 

distribution, the average energy of the electrons taking part in conduction will be almost equal to 

(Ec + Ev)/2 = Eg/2 (since Ev = 0 & Ec = Eg). Thus Fermi level lies in the mid part of the forbidden 

gap for an intrinsic semiconductors. 

Impurities level and Fermi level in extrinsic semiconductor 

a) n - type semiconductors : 
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              In case of n-type semiconductors, the electrons of donor atoms are free for the 

movement as compared to the resistance of electrons in that material, and hence they possess more 

energy. As a result the energy level for the electrons will be elevated to a position much higher 

than the valence band and lie very close to the conduction band as shown in the figure. These 

levels are called donor levels. The energy difference between the top of the valence band and the 

donor level is denoted as Ed. At low temperatures, thermal energy will be less and hence electrons 

can’t move from valence band to conduction band. But the same energy will be enough to transfer 

the electrons from donor level to the conduction band (since, Eg - Ed is small). These electrons are 

mainly responsible for conduction in n - type materials. Since these electrons occupy the energy 

levels very close to the bottom of the conduction band, the electrons get distributed between the 

energy levels in the bottom part of the conduction band and the donor levels. The difference 

between these two states will be almost equal to Ec - Ed (or Eg - Ed). Thus the average energy of 

electrons participating in conduction becomes 

2

1
(Ec + Ed) or

2

1
(Eg + Ed), and hence Fermi level in an n-type material at low temperature will be 

located in the forbidden band at the level 
2

1
(Ec + Ed) or

2

1
(Eg - Ed) just below the bottom of 

conduction band. 

b) p - type semiconductors: 

                          
              In case of p - type semiconducting materials, the acceptor atoms give rise to holes 

which are relatively free compared to those which are in the conduction band. Hence holes due 

to acceptor atoms possess higher energy than those in the conduction band. Since the energy 

for holes increases in the downward direction in the band diagram & they occupy energy levels 

in the band gap close to the valence band as shown in figure. These energy levels referred as 

acceptor levels. The energy difference between the acceptor levels & the top of the valence 

band is denoted by Ea - Ev = Ea (since Ev = 0). Since Ea is small, a small amount of thermal 
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energy is sufficient to transfer the holes from the acceptor levels to the valence band. At low 

temperature, the holes participate in the conduction undergo excitation and de-excitation 

between the acceptor level and energy levels in the top portion of the valence band. As a result, 

the average energy of the holes participating in conduction becomes (Ea + Ev)/2 or Ea/2 (since 

Ev = 0). Hence, the Fermi level in p-type material at low temperature will be located in the 

forbidden gap at the level (Ea + Ev)/2 or Ea/2 from the top of the valence band. 

 

 

Carrier concentration in an intrinsic semiconductor 

1) Expression for concentration (density) of electrons. 

The number of electrons present in the conduction band of an intrinsic semiconductor per unit 

volume is known as Electron concentration. It is given by  
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This is also the expression for electron concentration. 

 

2) Expression for hole concentration: 

The number of holes present in the valence band of an intrinsic semiconductor per unit volume is 

known as hole concentration. It is given by  

 

)2(
2

2

2
3
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














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  )2(
24

2
3

3












 kT

E

hh

F

ekTm
h

Nor   

This is also the expression for hole concentration. 

 

Relation between Fermi energy and energy gap for an intrinsic semiconductor 

(or Fermi energy in intrinsic semiconductor) 
 

For an intrinsic semiconductor, the number of electrons per unit volume in conduction band is 

equal to the number of holes per unit volume in valence band. 

                              Ne = Nh 
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By substituting the values of Ne and Nh we get 








 






 






















 kT

EE

hkT

EE

e

FVFc

e
h

kTm
e

h

kTm
2
3

2
3

22

2
2

2
2



 

   







 









 


  kT

EE

h

kT

EE

e

FVFc

ememor 2
3

2
3

 

2
3

2
3

)(2

      OR
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Taking logarithm on both sides, we get 
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At T = 0 K,    






 


2

VC
F

EE
E  This is the expression for Fermi energy.  

As we know that, Ev = 0 & Ec = Eg, then 

                               2

g

F

E
E   

Thus the Fermi level is in the middle of the band gap for an intrinsic semiconductor. 

Intrinsic carrier concentration 

In an intrinsic semiconductor there will be continuous production of electron-hole pairs due to 

thermal energy. At the same time there will be decrease in the number of electrons and holes due 

to electron-hole combination. As long as temperature remains constant the electron-hole 

concentration will also remain constant. Thus at temperature T K, Ne = Nh = Ni.  Where Ni is called 

intrinsic charge concentration. 

 Therefore the product of concentrations gives; Ni
2

 = Ne x Nh.  



Applied Physics for EEE Stream               Module – 5 Semiconductors & Devices            Dr. Shivalinge Gowda, Professor of Physics, MRIT 

7 
 

 On substituting for Ne & Nh in the above equation, we get 

  )1(
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2
2

2

4
32

3





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


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g
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Equations (1) represents charge carrier concentrations in an intrinsic semiconductor. 
 

Conductivity in intrinsic semiconductor: 
 

Conductivity will take place in an intrinsic semiconductor due to the movement of electrons and 

holes (charge carriers) under the application of electric field. The average velocity acquired by the 

charge carriers in the presence of electric field E, is called drift velocity Vd. 

The drift velocity, Vd  E or Vd = E   →  (1) 

Where  is called mobility of charge carriers. It is defined as the velocity acquired by a carrier per 

unit electric field. i.e. )2(
E

V
= d   

The net transfer of charges through the cross-section of the specimen gives the electric current in 

it. The total electric current (I) in the semiconductor specimen is the sum of the current due to 

drifting of electrons in the conduction band (Ie) and the current due to drifting of holes in the 

valence band(Ih). 

                                               )3( he III      

To find an expression for electrical conductivity, first we shall consider the flow of electrons in the 

semiconductor. Let ‘A’ be the area of cross-section, Ne is the number of electrons/unit volume and 

‘e’ is the magnitude of charge of an electron, then the flow of electron/second in the conduction 

band gives the electron current Ie. 

                                               )4( deee eAvNI        

              Current density of electrons is given by, 

                                       dee
e

e evN
A

I
J   

                                       
)5( EeNJ eee 

     Since   Ev ede   

But ohm’s law gives the relation for Je as     )6( EJ ee   

On comparing equations (5) & (6), we get     )7( eee eN   

 Is the electronic conductivity is the conduction band. Similarly, the conductivity due to holes in 

the valence band is given by 

         )8( hhh eN   

Where, Nh and μh represents the concentration & mobility of holes respectively. The total 

conductivity of the semiconductor is given by, 

                                 hheehe eNeN                  
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                                      or    )9( hhee NNe    

In an intrinsic semiconductor, ihe NNN   is the intrinsic carrier density, so that equation (9) 

becomes 

                                         )10( heii eN    

Using the expression for Ni from intrinsic semiconductor  

i.e.,   








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
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
in equation (10), we get 
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
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                 or )11(
2












kT

E

oi

g

e  

where    heheo eTmm
h

k



 








  2

3
4
32

3

2

2
2  

Equation (10) represents the expression for electrical conductivity in intrinsic semiconductor. 
 

Variation of Resistance or Resistivity with temperature in intrinsic 

semiconductor :

 
Resistance of any material is varies with temperature. The resistance of metals increases with 

temperature, whereas the resistance of the semiconductors is decreases with increase of 

temperature. The expression for electrical conductivity in an intrinsic semiconductor is given by  

)1(
2
















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E
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e  

Where,    heheo eTmm
h
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


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






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3
4
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2
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Since, 



1

  
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This is the expression for resistivity of the semiconductor.
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Taking logarithm on both sides we get, 
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The above equation (3) represents the equation for a straight line in which Eg/2k  is the slope. 

A graph of logR and 1/T is plotted.  
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This is the expression for the energy gap of a semiconductor in joules. 
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Hall Effect: 

“When a current carrying conductor is place in a magnetic field, a voltage will be generated 

perpendicular to both the current and the magnetic field. This principle is known as the hall 

effect.” 

This was observed first by E. H. Hall in the year 1879. The potential difference developed in a 

direction perpendicular to both current and magnetic field is called Hall voltage and the 

corresponding electric field is called Hall field. 

 

 

Consider a conductor carrying current along +ve X axis. Magnetic field is applied along +ve Z 

axis. Thus electrons experience Lorentz force along the -ve Y axis. Thus electrons accumulate on 

the lower surface which results in the accumulation of +ve charges on the upper surface. This 

results in an electric field developed between the two surfaces. 

 

The force on the electrons due to electric field further opposes the force due to magnetic field.  

A stage is reached where in both the forces are equal and an equilibrium state is reached The 

electric field developed across the material at equilibrium is called Hall Field. 

Expression for Hall Co-efficient: 

The Lorentz force exerts on electrons by the influence of magnetic field along +ve Y – axis is 

given by 

FL = Bev    (1) 

The force exerts on electrons by the induced electric field along -ve Y – axis is given by 

FE = eEH    (2) 
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Under equilibrium the Lorentz force on electrons is equal to force due to hall field. i.e., FL= FE  

    eEH = Bev    (3) 

Here e is electronic charge, EH is Hall Field, B is Magnetic field, v is the velocity of electrons. The 

current density J is given by  

J = nev     (4) 

Here n is the number density of charges. Dividing equation (3) by (4) we get 

 

BJRE

ne

BJ
E

n

B

J

eE

nev

Bev

J

eE

HH

H

H

H









 

Here RH is called the Hall coefficient and it is given by 

ne
RH

1
  

The Hall voltage is given by the equation 

VH = EH d = RHBJd 

 

Here d is the thickness of the material along y-axis. 

 

Note: In case of n-type semiconductors RH is negative and for p-type semiconductors RH is 

positive. 

 

Application of Hall Effect 

a. This effect is the basis of many practical applications and devices such as magnetic field 

measurements, and position and motion detectors. 

b. Hall Effect is also used in the determination of type of extrinsic semiconductor (P-Type and 

N-Type). 

c. Hall Effect is also used to find semiconductor properties like carrier concentration and 

mobility of carriers. 

Photodiode: 

 
Photodiode is a two terminal electronic device which, when exposed to light the current starts 

flowing in the diode. It is operated in reverse biased mode only. It converts light energy into 
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electrical energy. When the ordinary diode is reverse biased the reverse current starts increasing 

with reverse voltage the same can be applied to the photodiode. But in the case of photodiode the 

current can flow without application of reverse voltage, the P-N junction of the photodiode is 

illuminated by light and light energy dislodge valence electrons and the diode starts conducting. 

They are also called a photo-detector, a light detector, and a photo-sensor. Photodiodes are 

designed to work in reverse bias condition. 

Construction of Photodiode: 

 

 

The photodiode is made up of two layers of P-type and N-type semiconductor. In this, the P-type 

material is formed from diffusion of the lightly doped P-type substrate. Thus, the layer of P+ ions 

is formed due to the diffusion process. And N-type epitaxial layer is grown on N-type substrate. 

The P+ diffusion layer is developed on N-type heavily doped epitaxial layer. The contacts are 

made up of metals to form two terminal cathode and anode. 

 

The front area of the diode is divided into two types that are active surface and non-active surface. 

The non-active surface is made up of SiO2 (Silicon di Oxide) and the active surface is coated with 

anti-reflection material. The active surface is called so because the light rays are incident on it. 

While on the non-active surface the light rays do not strike. The active layer is coated with anti-
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reflection material so that the light energy is not lost and the maximum of it can be converted into 

current. The entire unit has dimensions of the order of 2.5 mm. 

Working of Photodiode: 

 

The working principle of a photodiode is, when a photon of ample energy strikes the diode, it 

makes a couple of an electron-hole. This mechanism is also called the inner photoelectric effect. If 

the absorption arises in the depletion region junction, then the carriers are removed from the 

junction by the inbuilt electric field of the depletion region. 

Therefore, holes in the region move toward the anode, and electrons move toward the cathode, and 

a photocurrent will be generated. The entire current through the diode is the sum of the absence of 

light and the photocurrent. So the absent current must be reduced to maximize the sensitivity of the 

device. 

Responsivity is a measure of input output gain of the detector. It is the measure of electrical output 

per optical input. The responsivity has units of amperes per watt. 

Rλ= IP /P 

Where, Rλ= Responsivity  

IP = Output Photo Current  

P = Incident Optical Power 

Application of Photodiode: 

The photodiode is used in optical communication system.  

The photodiode is used in automotive devices.  

The photodiode is used in medical devices.  

It is used in solar cell panels.  

The Photodiode are used in consumer electronics devices.  

It is used for exact measurement of the intensity of light in science & industry.  

It is used in character recognition circuit.  
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It is used in camera light meters, and street lights.  

It is used in demodulation.  

The photodiode is used in logic circuit.  

It is used in photo detection circuits. 

Phototransistor: 

A phototransistor is a light controlled switch that switches a circuit and amplifies the current when 

exposed to light It is a three layer semiconductor device whose light sensitive base is exposed The 

light striking the base converts into a base current that amplifies the current between the emitter 

and collector proportional to the intensity of light They are used for sensing light pulses of high 

speed and small magnitude It is similar to BJT except for the exposed base instead of a terminal 

 

 

Unlike a normal transistor a phototransistor has only two terminals, an emitter and collector The 

symbol of the phototransistor is very similar to any normal transistor except for the base terminal 

Instead of the base terminal, there are two pointing arrows representing incident light. 

 

It has a similar design to a normal bipolar transistor The base and collector region is larger as 

compared to a normal transistor And the base is covered with transparent epoxy resin and lens to 

prevent the base from contamination as well as focus light when entering the region Physically it 

resembles a photodiode. 
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The emitter is heavily doped as compared to the collector but the collector is relatively very large 

The physical area of the base and collector region is kept large to collect more light The larger area 

generates more base current, that is amplified Thus making it more sensitive than a photodiode. 

Working: 

Phototransistor operates just like any normal bipolar transistor except for the fact that the base 

current is generated by a light source instead of a voltage source The base current is generated on 

the principle of the photovoltaic effect According to this phenomenon when photons strike the PN 

junction, electron hole pairs are generated that separate and move in the opposite direction thus 

creating a base current The base current is then amplified by the transistor action Therefore the 

Phototransistor is 100 times more sensitive than the photodiode. 

When biasing, the collector is kept at a higher voltage with respect to the emitter in NPN 

phototransistor while in PNP, the collector is at a lower voltage with respect to the emitter And the 

collector to the base junction is reverse biased the base terminal (in the case of three lead 

phototransistors) is kept open or not connected, otherwise, it will operate as a normal transistor. 

Under no light conditions, there is a small reverse saturation current or leakage current called dark 

current that is directly proportional to the temperature as in photodiodes When light shines on the 

phototransistor, the lens focuses the light onto the collector base junction and generates a base 

current due to the photovoltaic effect The base current is amplified hundreds of times. 

Application of Phototransistors 

For light detecting and controlling 

In counting systems and punch card readers 

In relays 

Alarm Systems 

Level Indicators 

Proximity Detectors 

Encoders. 
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Semiconductor laser: 
 

Principle: A semiconductor diode laser is a specially fabricated P-N junction device that emits 

coherent light when it is forward biased. It works on the principle of LED where p-type and n-type 

semiconductors are heavily doped. Hence electrons and holes are recombined in the depletion 

region producing coherent beam radiations. 

Construction: The schematic diagram of semiconductor diode laser 

is shown in figure. It consists of a heavily doped n and p regions. 

The n-region is obtained by doping with pentavalent tellurium and 

the p-region is obtained by doping with trivalent zinc. The p-n 

region lies in a horizontal plane through the centre. The top and bottom faces of a diode are 

metalized to pass current through the diode. The front and rear faces are well polished parallel to 

each other and perpendicular to the plane of the junction. The other two opposite faces are 

roughened to prevent the lasing action in that direction. The first figure indicates energy level 

diagram for ordinary or LED diode and the second figure indicates the energy level diagram for 

Laser diode.  

   

 

 

 

 

Working: The Diode is forward biased using an external source. Therefore, electrons and holes 

flow across the junction. The injected electrons and holes in the depletion region cause 

spontaneous emission of photons and the junction acts as LED. A population inversion is achieved 

in the depletion region of heavily doped P-N junction semiconductor diode in forward biased. 

Hence more electrons are occupied in donor levels and conduction band of n-type semiconductor, 

and the Fermi level lies within the conduction band. Similarly, the acceptor levels are unoccupied 

and more holes are existing in the valence band and the Fermi level lies within the valence band. 

     When a diode is forward biased, the energy levels shifted and the new distribution is as shown 

in 2nd figure. As the current is increased, the intensity of light increased.  When the current reaches 

a threshold value the carrier concentration in the depletion region will reach very high values. This 
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region contains a large concentration of electrons in CB and holes in VB. i.e., upper levels in the 

depletion region are having high population while the lower levels are vacant. This is the 

population inversion. The narrow region where the state of population inversion is achieved is 

called active region. The Stimulated electron - hole recombination cause emission of coherent 

beam of radiation. At room temperature GaAs semiconductor diode emits laser light of wavelength 

9000Å in IR region. A GaAsP emits laser of wavelength 6500Å in the visible region as red light. 

 The semiconductor diode lasers are simple, compact and highly efficient. They require very 

little power. Diode lasers give more divergent beam having an angular spread of the order of 5°-

15°. They are less monochromatic and highly temperature sensitive. In semiconductor diode there 

is no meta-stable state. 

Advantages 

1. It has excellent efficiency 

2. The output can be modulated 

3. It produces both continuous wave output or pulsed output. 

4. It is highly economical 

Applications 

1. It is used in optical fiber communication. 

2. It is used in commercial CD recording and reading. 

 

Four probe method: 

 

The four probe apparatus is one of the standard and most 

widely used apparatus for the measurement of resistivity of 

semiconductors The apparatus consists of four equally 

spaced tungsten metal tips with finite radius) Each tip is 

supported by springs on the end to minimize sample damage 

during probing The four metal tips are part of an auto 

mechanical stage which travels up and down during 

measurements A high impedance current source is used to 

supply current through the outer two probes, a voltmeter 

measures the voltage across the inner two probes to 

determine the sample resistivity Typical probe spacing is 

around 2 mm These inner probes draw no current because of the high input impedance voltmeter 

in the circuit Thus unwanted voltage drop at point 2 and point 3 caused by contact resistance 

between probes and the sample is eliminated from the potential measurements. 
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In order to use this four probe method in germanium crystals or slices it is necessary to 

assume that 

1. The resistivity of the material is uniform in the area of measurement. 

2. A non-conducting boundary is produced when the surface of the crystal is in contact 

with an insulator. 

Case 1 Resistivity Measurements on a Large Sample. 

We assume that the metal tip is infinitesimal and sample is semi-infinite in lateral 

dimensions. For bulk samples where the sample thickness, W >> S, the probe spacing, we 

assume a spherical protrusion of current emanating from the outer probe tips. The 

resistivity is computed to be 

Sx
I

V
 20   

V = floating potential difference between the inner probes 

I = Current through the outer pair of probes  

S = Spacing between point probes 

ρ0 = Resistivity of the sample 

Case 2: Resistivity Measurements on a Thin Slice 

For the case of a non-conducting bottom on a slice the resistivity is computed from 

 SWf

0   

Case -3: Temperature dependence of resistivity 

The resistivity ρ of a semiconductor depends on the temperature T as follows 

kT

E
A

g

2
exp  

where A is a constant, Eg is the energy gap of the semiconductor. 
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Problems : 

1. The mobility of electrons and holes in a sample of intrinsic germanium at 300K are 0.36 m2/Vs 

and 0.14 m2/Vs respectively. If the resistivity of the specimen is 2.2 Ω.m, compute the intrinsic 

concentration. 

                   we know that, 

   heii eN    

                                        Or  
 heii

i
en 





11

 

             
   14.036.010602.12.2

11
19 







hei

i
e

n


                                         

                                          
  

318 /1067.5 mni   

2. The following data are given for intrinsic germanium at 300 K. ni = 2.4x1019/m3, μe = 0.39  

m2/Vs, μh = 0.19 m2/Vs. calculate the resistivity of the sample.  

we know that, 

                   hei

i
en 





1

          i

i



1


 

              
 

mi 





   448.0
19.039.010602.1104.2

1
1919

  

3. Find the conductivity of intrinsic silicon at 300 K. It is given that ni at 300 K in silicon is 

1.5x1016/m3 and mobilities of electrons and holes in silicon are 0.13 m2/Vs and 0.05 m2/Vs 

respectively. 

Solution,                                        we know that, 

ni = 1.5x1016/m3                             σi = ni e (e+h) 

μe = 0.13 m2/Vs                   σi = 1.5x1016x1.602x1019 (0.13+0.05) 

μh = 0.05 m2/Vs                          σi = 4.325x10-4 /Ωm 
 

4. For an intrinsic semiconductor with gap width Eg = 0.8 eV, calculate the concentration of 

intrinsic charge carriers at 300 K assuming that mn
* = mp

*= me (rest mass of electrons). 

                                we know that, 

                            

























kT

E

e
i

g

e
h

kTm
N

2

2

2
3

2
2

                  
ep mm 



em  

                                    


























kT

E

e
i

g

eT
h

km
N

2

2
2
3

2
3

2
2


 

 
 













































3001038.12

10602.18.0

234

3123
23

19

2
3

2
3

exp300
10626.6

101.91038.12
2


iN  

                         
m/10 3.0410  1.22  5196.15  102.4 = N 18-721

i   

Solutions, 

e = 0.36 m2/Vs 

h = 0.14 m2/Vs 

ρi  = 2.2 Ωm  

ni=? 

Solutions, 

ni=2.4x1019/m3 

μe =0.39 m2/Vs 

μh=0.19 m2/Vs 

ρi  = ?  

Solutions, 

Eg = 0.8 eV 

T=300 K   

Ni = ? 
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5. The effective mass of the electron in silicon is 0.31 me, where me is the free electron mass. Find 

the electron concentration for silicon at 300 K assuming that the Fermi level lies exactly in the 

middle of the energy gap, given that the energy gap for silicon is 1.1 eV. 

we know that, 

 

                                   








 












 kT

EE

e
e
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e
h
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2
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2
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
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



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



















 

                        
 















































3001038.12

10602.11.1

234

2331
23

19
2
3

10626.6

3001038.1101.92
2 eNe


                                       

                          
3151024 1007.210784.4103255.4 mNe  
 

 

6. Calculate the position of the Fermi level for pure silicon at 300 K, if the electron concentration 

is 2x1015m-3. Given that for silicon, the energy gap is 1.1eV, and the effective mass of electron is 

0.31me, where me is the free electron mass. 

we know that, 

                                            












 












kT

EE

e
e

gF

e
h

kTm
N

2
3

2

2
2


           

                 
 










 

























kT

EE gF

e

2
3

234

2331
15

10626.6

3001038.1101.931.02
2102


  

                          









 


kT

EE gF

e2415 103255.4102        

                    or    
10

24

15

10624.4
103255.4

102 









 







kT

EE gF

e  

                                   or       5.2110624.4ln 10 








 


kT

EE gF

 

  5.21 kTEE gF                   or       5.21 kTEE gF  

                             5.213001038.110602.11.1 2319  

FE  

                                  
1919 1089.0107622.1  FE or     JEF

1910872.0   

                                  or        eVEF 544.0
10602.1

10872.0
19

19











 

                The position of Fermi level is 0.544 eV. 

Solutions, 

me
*=0.31me 

T=300K 

if Ev=0, Ec=Eg & also 

Eg=1.1eV=1.1x1.602x10-19J 

here EF = Eg/2 & me
*= 0.31me 

EF  = Eg/2, Ne=?     

Solutions, 
315102  mNe

JEg

1910602.11.1 

ee mm 31.0


 

T=300 K 

EF=? 
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7. The hall coefficient of a specimen is 1.25x10-4 m3/C and its resistivity is 9x10-4 Ωm. Find the 

mobility and the density of the charge carriers. 

Solutions, 

?

?

109

/1025.1

4

34












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
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R

TKW
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h

H

h

h
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








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139.0

10910602.110993.4

1

1

1

..


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sVmn

xxxxx

en
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TKW
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h

he

h

hh

h









 

 

8. The hall co-efficient of a specimen of a doped silicon is found to be 3.66×10−4m3/C. The 

resistivity of the specimen is 9.93×10−3ohm-m. Find the mobility and density of charge carrier, 

assuming single carrier concentration. 

9. The conductivity and Hall co-efficient of an n type silicon specimen are 112 ohm-1m-1 and 

1.25×10−3 m3/C, respectively. Calculate the charge carrier concentration and electron mobility. 

10. Calculate the concentrations at which the acceptor atoms must be added to a germanium 

sample to get a p-type semiconductor with conductivity 0.15 ohm-1m-1. Given the mobility of holes 

0.17 m2V-1s-1. 

Some important questions: 

1. Explain the significance of Fermi level in an intrinsic semiconductor. 

2. Explain the significance of Fermi levels in extrinsic semiconductor. 

3. Explain the significance of Fermi level in n-type extrinsic semiconductor. 

4. Explain the significance of Fermi level in p-type extrinsic semiconductor. 

5. Derive the expression for electron concentration in an intrinsic semiconductor. 
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6. Derive the expression for hole concentration in an intrinsic semiconductor. 

7. Derive the expression for electrical conductivity of an intrinsic semiconductor. 

8. Derive an expression for resistivity of an intrinsic semiconductor. 

9. Show that the Fermi level lies at the middle of the forbidden gap. 

10. Show that 
2

g

F

E
E   or 

2

VC
F

EE
E


  

11. Derive an expression for intrinsic carrier concentration in an intrinsic semiconductor. 

12. Explain the variation of resistance or resistivity with temperature in a semiconductor.  

13. Define Hall effect. Derive an expression for Hall coefficient. 

14. Define Hall effect. Derive an expression for Hall voltage. 

15. Explain the construction and working of Laser diode. 

16. Explain the construction and working of photo diode. 

17. Describe how do you determine the resistivity of a semiconductor by Four probe method.   

18. Write a note on phototransistor. 

 

* * * * * 
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