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Module – 1 :  Laser & Optical Fibers 

Notes 

Syllabus:       

 

Laser and Optical Fibers:        8 Hrs 

LASER: Characteristic properties of a LASER beam, Interaction of Radiation with Matter, Einstein’s 
A and B Coefficients and 

Expression for Energy Density (Derivation), Laser Action, Population Inversion, Metastable State, 
Requisites of a laser system, 

Semiconductor Diode Laser, Applications: Bar code scanner, Laser Printer, Laser Cooling 
(Qualitative), Numerical Problems. 

Optical Fiber: Principle and Structure, Propagation of Light, Acceptance angle and Numerical 
Aperture (NA), Derivation of Expression for NA, Modes of Propagation, RI Profile, Classification of 
Optical Fibers, Attenuation and Fiber Losses, 

Applications: Fiber Optic networking, Fiber Optic Communication. Numerical Problems 

Pre requisite: Properties of light 

Self - learning: Total Internal Reflection 
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LASER 

Introduction: 

LASER is the acronym (short form) for Light Amplification by Stimulated Emission of Radiation. 

The important Characteristic properties of LASER beam are 

1. It is highly monochromatic. 

2. It is highly coherent. 

3. It is highly directional. 

4. It is a high intensity beam of light. 

In order to understand the mechanism involved in the production of laser beam, one has to know the 

process taking place in an atomic system such as absorption and Emission of radiation. 

Interaction of radiation with matter: 

The interaction of radiation with matter occurs through the following three processes, namely. 

1. Induced absorption 

2. Spontaneous emission and 

3. Stimulated emission 

1. Induced Absorption: 

 

When a suitable energy of a photon is incident on an atom, the photon is absorbed it. In this process 

the incident photon excites an atom from ground state to higher energy sate and hence it is known as 

Induced Absorption. 

Consider an atom in a lower energy states E1, it will excite to higher energy states E2 by absorbing the 

incident photon of energy E = ℎν = E2 – E1. where ℎ is the Planck’s constant and ν is the frequency of 

the incident photon. The induced absorption can be represented as 

*AhA    

Where A is the atom in the ground sate E1 and A* is the excited atom in the higher energy sate E2. 

Let N1 and N2 be the number of atoms in the energy levels E1 and E2, and Uν be the energy density of 

the incident radiation. Thus the probability of transition of atoms from E1 to E2 is depending on N1 and 

Uν . 

Therefore, the rate of induced absorption is  N1Uν = B12N1Uν 

Where B12 is a proportionality constant known as the Einstein's coefficient for induced absorption. 

E2 

E1 

E2 

E1 

N2 

N1 

N2 

N1 

Incident Photon, E = hν 

A 

A* 

(After)      )( *AhABefore  



Applied Physics for CSE Stream               Module – I : Laser & Optical Fiber             Dr. Shivalinge Gowda, Professor of Physics, MRIT  

3 

 

 

2. Spontaneous emission: 

 

Spontaneous emission is the process of emission of photon, when an atom transits from higher energy 

level to lower energy level without the influence of any external energy. 

An atom in the higher energy state E2 makes a transition to lower energy state E1 without the action of 

any external agency. the photon of energy E2 – E1 = ℎν is emitted. In this process the emitted photons 

need not travel in the same direction. Thus the emitted light beam is not directional. The spontaneous 

emission can be represented as 

hAA *  

In this process, the probability of transition of atoms from E2 to E1 is depending on N2 only. 

Therefore, the rate of spontaneous emission is  N2 = A21N2 

Where A21 is a proportionality constant known as the Einstein's coefficient for spontaneous emission. 

3. Stimulated emission: 

 

When a photon of suitable energy interacts with an atom in the higher energy state without loose 

energy then the atom is stimulated (Forced) to make transition from higher energy state E2 to the lower 

energy state E1 with the emission of a photon of energy E2 – E1 = ℎν. Both the incident photon and the 

emitted photons are coherent or in phase and travel in the same direction. This process is known as 

stimulated emission. The stimulated or induced emission can be represented as 

 hAhA 2*   

This kind of emission is responsible for laser action. 

In this process, the probability of transition of atoms from E2 to E1 is depending on N2 and Uν  

Therefore, the rate of stimulated emission is  N2Uν = B21N2Uν 

Where B21 is a proportionality constant known as the Einstein's coefficient for stimulated emission. 
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Expression for Energy density in terms of Einstein Coefficients: 

Consider a system containing of large number of atoms is under thermal equilibrium. Let E1 and E2 be 

the lower and higher energy levels which contains N1 and N2 number of atoms respectively. Let Uν be 

the energy density of the incident radiation. Hence the system absorbs and emits the energy through 

the processes of induced absorption spontaneous emission and stimulated emission. The energy of the 

photon absorbed and emitted by the atoms is E = ℎν = E2 – E1. 

The system be in thermal equilibrium; the total energy of the system remains unchanged in spite of the 

interaction of the incident radiation. 

At thermal equilibrium, 

Rate of Absorption = Rate of Spontaneous emission + Rate of Stimulated emission 

 we have,                                UU 221221112 NBNANB   

221221112 UU NANBNB    

  221221112U NANBNB   

 221112

221U
NBNB

NA




 

 both numerator & denominator of the above equation by B21 and N2, we get, 

                                            (4)                         
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According to Boltzmann distribution law, we have 
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Now, by substituting this in equation (4), we have  

                             (6)                        
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According to Planck’s law, the equation for energy density E is given by 

                                      (7)                   

1

18
U

3

3



















KT

h

e
c

h


                    

Now, comparing equation (6) and equation (7), we have 
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This implies that the probability of induced absorption is equal to the probability of stimulated 

emission. Because of the above identity, A21 and B21 can be represented by A and B in equation (6) 

and it can be rewrite as.  


















1

1
U

KT

h

e
B

A
  

This is the expression for energy density in terms of Einstein’s A and B coefficients.  

Condition for Lasing action: 

Consider a LASER system. Let an atom in 

the excited state is stimulated by a photon 

of suitable energy, so that atom makes 

stimulated emission. Then two coherent 

photons are obtained. These two coherent 

photons if stimulate two more atoms in the 

exited state to make emission then four 

coherent photons are obtained. These four coherent photons stimulate four more atoms in the excited 

state resulting in eight coherent photons and so on. As this process continues, number of coherent 

photons produced increases. These coherent photons constitute an intense beam of LASER. This 

phenomenon of building up of number of coherent photons, so as to get an intense LASER beam is 

called lasing action. 

LASER action could be achieved through the conditions of population inversion by pumping and 

meta-stable state. 

(i) Population Inversion: 

When a system is under thermal equilibrium, the number of atoms in excited state is less than the 

number of atoms in the lower energy state. The production of LASER is achieved through 

stimulated emission rather than induced absorption and spontaneous emission. This is possible only 

if the number of atoms in the higher energy state is more than the number of atoms in the lower 

energy state and the process of achieving this is called population inversion.  

Thus the essential conditions for population inversion are  

a) Higher energy state should possess a longer life time. 

b) The number of atoms in the higher energy state must be greater than the number of atoms in the 

lower energy state. 

 

Incident 
Photon 

Stage - 1  Stage - 2 Stage - 3 
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(ii)  Pumping Process: 

 Population inversion is achieved by supplying energy from a suitable source is called Pumping. In 

addition, to have more stimulated emissions, the life time of atoms in the excited state must be 

longer. There are number of techniques for pumping a collection of atom to an inverted state 

(excited state).  

(iii) Meta stable state:  

The life time of an energy level is of the order 

of 10−8 second. If an atom possesses unusual 

longer life time in an energy state such a state is 

referred to as a meta-stable state. Usually the 

life time of meta-stable state varies from 10-2s to 

10-3s. Population inversion could be achieved with the help of three energy state with one of them a 

meta-stable state and is as shown in the figure. The population inversion is achieved between the 

state E2 and E1 as state E3 is a meta-stable state. 

Note : The principles of Laser are 1. Stimulated Emission, 2. Population Inversion & 3. Meta-stable 

State 

Requisites of a LASER system: 

The three requisites of a LASER system are; 

1. Active medium 

2. Pumping Source 

3. LASER cavity 

1. Active medium: Population inversion occurs at certain stage in the active medium due to the 

absorption of energy. The active medium supports meta-stable states. After this stage the active 

medium is capable of emitting LASER light.  

 

      

 

 

2. Pumping Source: Pumping source is an excitation source in order to achieve population inversion. 

That means more and more atoms are to be moved to higher energy state is called pumping. This is 

achieved by supplying suitable energy from an energy source. optical / light energy is used in optical 

pumping and electrical energy is used electrical pumping. 
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3. LASER cavity: The LASER Cavity is an active medium bound between two highly parallel 

mirrors. The reflection of photons from the mirrors results in multiple traverse of photons through the 

active medium inducing more and more stimulated emissions. Thus amplification of light is achieved. 

This also helps to tap certain permissible part of LASER energy from the active medium. The cavity 

resonates and the output will be maximum when the distance L between the mirrors is equal to an 

integral multiple of /2 .            

Where,  is the wavelength of incident suitable radiation and L is the length of the LASER cavity. 

Semiconductor laser: 
 
Principle: A semiconductor diode laser is a specially fabricated P-N junction device that emits 

coherent light when it is forward biased. It works on the principle of LED where p-type and n-type 

semiconductors are heavily doped. Hence electrons and holes are recombined in the depletion region 

producing coherent beam radiations. 

Construction: The schematic diagram of semiconductor diode laser 

is shown in figure. It consists of a heavily doped n and p regions. 

The n-region is obtained by doping with pentavalent tellurium and 

the p-region is obtained by doping with trivalent zinc. The p-n 

region lies in a horizontal plane through the centre. The top and bottom faces of a diode are metalized 

to pass current through the diode. The front and rear faces are well polished parallel to each other and 

perpendicular to the plane of the junction. The other two opposite faces are roughened to prevent the 

lasing action in that direction. The first figure indicates energy level diagram for ordinary or LED 

diode and the second figure indicates the energy level diagram for Laser diode.  

   

 

 

 

 

Working: The Diode is forward biased using an external source. Therefore, electrons and holes flow 

across the junction. The injected electrons and holes in the depletion region cause spontaneous 

emission of photons and the junction acts as LED. A population inversion is achieved in the depletion 

region of heavily doped P-N junction semiconductor diode in forward biased. Hence more electrons 

are occupied in donor levels and conduction band of n-type semiconductor, and the Fermi level lies 
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within the conduction band. Similarly, the acceptor levels are unoccupied and more holes are existing 

in the valence band and the Fermi level lies within the valence band. 

     When a diode is forward biased, the energy levels shifted and the new distribution is as shown in 

2nd figure. As the current is increased, the intensity of light increased.  When the current reaches a 

threshold value the carrier concentration in the depletion region will reach very high values. This 

region contains a large concentration of electrons in CB and holes in VB. i.e., upper levels in the 

depletion region are having high population while the lower levels are vacant. This is the population 

inversion. The narrow region where the state of population inversion is achieved is called active 

region. The Stimulated electron - hole recombination cause emission of coherent beam of radiation. At 

room temperature GaAs semiconductor diode emits laser light of wavelength 9000Å in IR region. A 

GaAsP emits laser of wavelength 6500Å in the visible region as red light. 

 The semiconductor diode lasers are simple, compact and highly efficient. They require very little 

power. Diode lasers give more divergent beam having an angular spread of the order of 5°-15°. They 

are less monochromatic and highly temperature sensitive. In semiconductor diode there is no meta-

stable state. 

Engineering applications of Lasers: 

(1) Bar Code Scanner:  

                              

A bar code consists of a series of strips of white and black bars. Each strip has a width of about 0.3 

mm and the total width of the bar code is about 3 cm. By simple scanning complete information 

about the product can be obtained. A typical scanning speed is about 200 m/s. In the bar code 

scanner, a low power (~ 0.5 mW) laser beam is reflected by a rotating polygon mirror to scan along 

a line. When the laser beam hits the bar code, the amount of reflected light from the bar code is 

captured and then the decoder converts the black and white bars with the binary signals. These 

reflected light signals (binary signals) are focused on a photo detector, which converts the light 

signal to an electrical signal. Further these electrical signals are then converted in to text data and 

are delivered to a computer by the scanner. 
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In order to be able to scan the product in any arbitrary direction for ease of scanning, the laser beam 

is made to scan in multiple directions by using multiple mirrors with the rotating polygon. 

Advantages of laser barcode scanner: 

i) The laser barcode scanner is used for non-contact scanning flexibly and efficiently.  

ii) The laser barcode scanner is the only choice when the scanning distance exceeds 30 cm. 

iii) The laser barcode scanner can scan irregular barcode surface and read through glass or 

transparent adhesive paper, and it will not damage the barcode label. 

iv) The Human errors are minimized and eliminated while using barcode scanners, therefore they 

are utilized and used in majority of the business globally. 

v) The barcode readers are very accurate while collecting the data from sticker and labels therefore 

the chances of making errors are neutralized. 

(2) Laser Printer:   

 

 Laser printer was invented at XEROX in 1969 by researcher Gary Starkweather. Laser printers are 

digital printing devices that are used to create high quality text and graphics on plain paper. A diode 

laser is used in the process of printing in Laser printer. 

Construction: A laser printer consists of three main blocks, namely the scanning unit, toner 

cartridge unit and fuser assembly unit. The scanning unit of a laser printer typically consists of a 

laser diode, a scanning motor and a polygon mirror. 

Working principles are:  

1. A laser beam projects an image of the page to be printed onto an electrically charged rotating 

photo sensitive drum coated with selenium. 

2. Photo conductivity allows charge to leak away from the areas which are exposed to light and the 

area gets positively charged. 

3. Toner particles are then electrostatically picked up by the drum’s charged areas, which have been 

exposed to light. 

4. The drum then prints the image onto paper direct contact and heat, which fuses the ink to the 

paper.  
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Advantages: 

1. Laser printers are generally quiet and fast. 

2. Laser printers can produce high quality output on ordinary papers. 

3. The cost per page of toner cartridges is lower than other printers. 

Disadvantages: 

1. The initial cost of laser printers can be high. 

2. Laser printers are more expensive than dot-matrix printers and ink-jet printers 

                            

  (3) Laser Cooling: 

 

                      

 Principle of Laser cooling is the use of dissipative light forces for reducing the random motion 

and thus the temperature of small particles, typically atoms or ions. Depending on the mechanism 

used, the temperature achieved can be in the millikelvin, microkelvin or even nanokelvin regime.  

Laser cooling is a technique used to slow down and manipulate the motion of atoms or molecules 

using laser light. By carefully tuning the frequency of the laser light to match the energy 

difference between atomic energy levels, it is possible to transfer momentum to the atoms and 

reduce their kinetic energy.  

 If an atom is traveling toward a laser beam and absorbs a photon from the laser, it will be 

slowed by the fact that the photon has momentum 


 h

c

h

c

E
mcP   . It would take a large 

number of such absorptions to cool the sodium atoms to near 0K. There are two types of laser 

cooling; they are Doppler Cooling and Sisyphus Cooling. 

 

 

Laser Cooling 
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Problems:  

(1) Show that the ratio of rate of spontaneous emission to induced absorption is given by 
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(2) Find the number of modes and their frequency separation in a resonant cavity of length 1 m of a 

laser operating at wavelength 632.8nm. 

Soln.; L = 1m, λ = 632.8 nm = 632.8x10-9m, n =? 
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(3) A laser operating at 632.8nm emits 3.182x1016 photons per second. Calculate the output 

power of the laser. Also find the percentage power converted into coherent light energy, if 

the input power is 100 watt. 

Soln.; λ = 632.8nm = 632.8x10-9m, N = 3.182x10-16photon/sec, p = ?, input power = 100 watt,  

%age power =? 
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PtEENWKT .        ,  

       OR     .
t
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(4) Calculate the wavelength of laser emitted from an extrinsic semiconductor laser if the 

band gap is 0.02eV. To which region of spectrum does it belong? 

Soln.; λ = ?, Eg = 0.02 eV = 0.02x1.602x10-19 J 

m
E

hc

hc
hEWKT

g

g

5
19

834

10208.6
10602.102.0

10310626.6

    ,
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


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This wavelength region belongs to infrared region (0.01 to 7x10-5m). 

NOTE: Visible region 7x10-5m to 4x10-5m, ultraviolet 4x10-5m to 10-7m 

(5) A pulse from laser with power 1mW lost for 10nS, if the number of photons emitted per 

pulse is 3.491x107. Calculate the wavelength of laser. (May22) 

Soln.; P= 1 x10-3W, t=10 x10-9sec, N=3.491x107, λ=?  

                         PtEN .  

            Pt

Nhc
Pt

hc
N  
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m7
93
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1010101
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


  

(6) A pulsed laser emits photons of wavelength 780nm with 20mW average power per pulse. 

Calculate the number of photons contained in each pulse if the pulse duration is 10ns. 

Soln.; λ=780 x10-9m, P= 20 x10-3W, N=?, t=10 x10-9sec 

PtENWKT .     ,  

hc
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NPt
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N
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photonsN 8
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1010102010780
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


 


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(6a) A laser source has a power output of 10-3W. Calculate the number of photons emitted per 

second given wavelength of laser 692.8nm. (Model QP) 

Soln., λ = 692.8 x10-9m, P = 10-3W, N = ?, t = 1sec 

hc

Pt
NWKT


      ,  

condphotons/se10486.3
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110108.692 15
834

39
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


 



N  

(7) In a laser system, operating at 323K, the wavelength of the light emitted is 1.3µm. 

Determine the ratio of population of the energy levels (Boltzmann's factor). 

Soln.,  T= 323K, λ=1.3 x10-6m,  
1

2

N

N
? 

KT

hc

KT

h

ee
N

N
WKT 

 


1

2    ,  

15304.343231038.1103.1

10310626.6

1

2 10265.1
236

834




 



xee
N

N
 

(8) The ratio of population of two energy levels out of which one corresponds to meta stable 

state is 1.059 x 10-30. Find the wavelength of light emitted at 330K. 

Soln., ,10059.1 30

1

2 
N

N
 T = 330K,   = ? 

KT

hc

KT

h

ee
N

N
WKT 

 


1

2    ,  

KT

hc

N

N
OR













1

2ln       

  mx

N

N
KT

hc 7
3023

834

1

2

10323.6
10059.1ln3301038.1

10310626.6

ln






















  

nmOR 3.632           

(8a) Calculate the ratio of population for a given pair of energy levels corresponding to 

emission of radiation 694.3nm at a temperature of 300K. (Model QP) 

              KT

hc

KT

h

ee
N

N
WKT 

 


1

2    ,      

                        31155.693001038.1103.694

10310626.6

1

2 1025.9
239

834




 



ee
N

N
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(9) Calculate the ratio of (i) Einstein's coefficients and (ii) stimulated to spontaneous emissions, 

for a system in thermal equilibrium at 300K in which radiations of wavelength 1.39µm 

are emitted. 

Soln., ?,     and    ??
21

12

21

21

21

21 
A

B

B

A

B

A
 Rate of stimulated to spontaneous=? λ=1.39 X10-6m,      

          T=300K 

 
15

21

21

15
36

34

33

3

21

21

102.6

102.6
1039.1

10626.6888
      , )(

















B

A

h

c

h

B

A
WKTi





 

 
221

221

emission sspontaneouofRate

emission stimulatedofRate
 , )(

NA

UNB
WKTii


  


















1

1
  U,

21

21

kT

h

e
B

A
But   

























1

1

1

1
.

emission sspontaneouofRate

emission stimulatedofRate

21

21

21

21

kT

hc

kT

hc

ee
B

A

A

B



 

   
16

15543.34

3001038.11039.1

10310626.6
1096.9

1100041

1

1

1

1

1

emission sspontaneouofRate

emission stimulatedofRate

236

834
































 x.e
e

Model Questions: 

1. What is LASER? Enumerate the Characteristics of a LASER Beam.  

2. Discuss the three possible ways through which radiation and matter interaction can take place. 

3. Explain the terms, (i) Induced absorption, (ii) Spontaneous emission, (iii) Stimulated emission,  

(iv) Population inversion, (v) Meta-stable state & (vi) Resonant cavity.  

4. Explain the rates of absorption and emission and hence derive an expression for energy density 

using Einstein’s A and B coefficients.  

5. Explain requisites of LASER system.  

6. What is Semiconductor LASER? Describe with energy band diagram the construction & working 

of Semiconductor diode LASER along with applications.  

7. Discuss the working of LASER barcode reader.  

8. With the help of a sketch describe the principle, construction and working of the LASER Printer.  

9. Explain LASER Cooling and its application. 
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Numerical Problems:  

1. Find the ratio of population of two energy levels in a LASER if the transition between them 

produces light of wavelength 6493 Å, assuming the ambient temperature at 27°C.  

2. Find the ratio of population of two energy levels in a medium at thermal equilibrium, if the 

wavelength of light emitted at 291 K is 6928 Å.  

3. The ratio of population of two energy levels out of which one corresponds to metastable state is 

1.059×10−30. Find the wavelength of light emitted at 330 K.  

4. Find the ratio of population of two energy levels in a medium at thermal equilibrium, if the 

wavelength of light emitted at 300 K is 10µm. Also find the effective temperature when energy 

levels are equally populated.  

 5. The average power output of a LASER beam of wave length 6500 Å is 10 mW. Find the number 

of photons emitted per second by the LASER source.  

6. The average power of a LASER beam of wavelength 6328 Å is 5 mW. Find the number of photons 

emitted per second by the LASER source.  

7. A pulsed LASER has an average power output 1.5 mW per pulse and pulse duration is 20 ns. The 

number of photons emitted per pulse is estimated to be 1.047×108. Find the wavelength of the 

emitted LASER.  

8. A pulsed LASER with power 1 mW lasts for 10 ns. If the number of photons emitted per pulse is 

5×107. Calculate the wavelength of LASER. 

9. A Ruby LASER emits a pulse of 20 ns duration with average power per pulse being 100 kW. If the 

number of photons in each pulse is 6.981×1015, calculate the wavelength of photons.  

10. In a LASER system when the energy difference between two energy levels is 2×10−19 J, the 

average power output of LASER beam is found to be 4 mW. Calculate number of photons emitted 

per second. 

 

 



Applied Physics for CSE Stream               Module – I : Laser & Optical Fiber             Dr. Shivalinge Gowda, Professor of Physics, MRIT  

16 

 

OPTICAL FIBERS 

Introduction 

Optical fiber is a device used to transmit light through bundle of thin fibers of transparent dielectric 

material from one end to another end for a very long distance. It works on the principle of Total 

Internal Reflection (TIR). 

Construction: The sectional view of a typical optical fiber is as 

shown in the figure. It has three regions named as Core, 

Cladding and Sheath. 

1. The innermost light guiding region is called Core. 

2. The layer covering core is called Cladding or Clad, which helps in total internal reflection of light. 

3. The outermost protective layer is called Sheath (Coating), which protects the fiber from mechanical 

stress and chemical reactions. 

The optical fiber is designed to support total internal reflection and hence the refractive index (RI) of 

core n1 is made greater than the RI of cladding n2. A typical fiber will be of the order of few microns. 

Total Internal Reflection  

Consider a ray of light moving from a denser 

medium of refractive index n1 to rarer medium of 

refractive index n2. As a result, the incident ray of 

light bends away from the normal. Hence the angle of 

refraction θ2 is greater than the angle of incidence θ1. 

As the angle of incidence increases the angle of 

refraction also increases. For a particular angle of 

incidence, i = θc the refracted ray grazes the interface separating the two media. The corresponding 

angle of incidence θc is called critical angle. If the angle of incidence is greater than the critical angle 

θc, then the light ray is turned back into the same medium and is called Total Internal Reflection. 

The above figure shows Total Internal Reflection; 

According to Snell’s law 

  sinsin 2211  θ = nθn  

when θ1= θc, then θ2 = 90⁰  and  sin90⁰ = 1  

21 sin    = nθn c  

⸫  








1

21

1

2 sinor             sin
n

n
 =θ

n

n
 = θ cc  

 

Optical Fiber 

Core 
Cladding 

Sheath 

Note: Angle of incidence, i = θc = critical angle,  θ1< θc & θ3 > θc 

- - - Normal 

r = θ 2 

Rarer Medium, n2 

Denser Medium, n1 

Total Internal Reflection 

θc 

r = 90 

θ1 θ3 
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Angle of acceptance and Numerical aperture (NA): 

Acceptance angle () is the maximum angle of incidence with which the ray is sent into the fiber core 

which allows the incident light to be guided by the core. It is also called as waveguide acceptance 

angle or acceptance cone half angle. 

In optics, the numerical aperture (NA) of an optical fiber is a dimensionless number that characterizes 

the range of angles over which the fiber can accept light. Numerical aperture represents the light 

gathering capability of optical fiber and it is defined as sine of the acceptance angle.  

 0sinθ NA    

Condition for propagation (Derivation for Angle of Acceptance) 

 

 
 
 
 
 
 
Consider an optical fiber with core made of refractive index n1 and cladding made of refractive index 

n2. Let n0 be the refractive index of the surrounding medium. 

Let a ray of light OA entering into the core at an angle of incidence θ0 w.r.t fiber axis. Then it is 

refracted along AB at an angle θ1 and meet the core-cladding interface at critical angle of incidence (θc 

= 90 − θ1). Then the refracted ray grazes along BC.  

By applying Snell’s law at A, we get  

 sinsin 1100  θ = nθn  

(1)            sin sin 1
0

1
0 θ

n

n
 = θ  

Again by applying Snell’s law at B, we get  

get  we1, sin90   and  cosθ)θ-sin(90 since,          90sin)90sin( 11211    = nθn  

(2)         cosor         cos
1

2
1211 n

n
 =θ  = nθn  

1
2

11
2

1
2 cos1inor         1cossin θ =θs   =θθ   

(3)         1in  
2
1

2

1

2

n

n
 =θs   

By substituting this in equation (1), we get 

(4)      
1

   
1

     1 sin 22
1

0

22
1

10

1
2
1

2

0

1
0 22

2

nn
n

nn
nn

n

n

n

n

n
 = θ   

Since, Numerical Aperture, NA = sinθ0, 

     
1 22

1
0

2nn
n

NA =   

n0 
θ0 n1 

Axis of the fiber 

Acceptance  
          Cone 

θ1 

n2 θ2 = 90⁰ 

Cladding, n2 

Core, n1 90-θ1 

O 

A 

B 
C 
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If the surrounding medium is air, then n0 = 1 

(5)          sin 22
10 2nnθNA =   

This is the expression for Numerical Aperture of an optical fiber. 
Light is transmitted through the fiber only when 

22
100 2sinsinor          nnθθθθ ii   

(6)          sin   22
1 2nnNAθi   

This is the condition for propagation for light through the optical fiber with multiple total internal 

reflections. 

From equation (4), we have  

    
1

 sin 22
1

0
0 2nn

n
 = θ   

Or     
1

sin 22
1

0

1
0 2 








 nn

n
 = θ  

If the surrounding medium is air, then n0 = 1 

   NAnn = θ 122
1

1
0 sin      sin 2

   

This is the expression for Angle of Acceptance of an optical fiber. 

Fractional index change (∆): 

 It is the ratio of the difference between the refractive indices of the core and cladding to the 

refractive index of core of an optical fiber.  

i.e., 
1

21

n

nn 


 

Δ is always positive and less than 1. Because, n1 > n2.
 

Relation between NA and ∆: 

WKT, 2
2

2
1 nnNA       and  

1

21

n

nn 
  

  
 211

2121

nnnNA

nnnnNA




 

Since 21 nn  ,  11 2nnNA   

 21nNA  

Modes of Propagation: In an optical fiber the wave propagation mode is referred to as fiber modes. 

The light ray paths along which the waves are in phase inside the fiber are known as modes. 
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In simple words, the allowed paths for the light ray inside the fiber are known as modes of 

propagation. 

 
λ

d
     modes ofNumber   

Where, d is the diameter of the core and  is the wavelength of the light ray travelling through the 

fiber. 

 The different types of fiber modes are guided mode, leaky mode and radiation mode. In an optical 

communication system, signals are transmitted using guided modes only. 

V- Number: The number of modes supported for propagation in the fiber depends on the core size, 

operating wavelength and refractive indices of core and cladding materials. It can be conveniently 

defined using a normalized frequency parameter, called V- number and it is given by 

2
2

2
1 nn

d
V 




 

Where λ is the (operating) wavelength of light propagating in the fiber. 

d is the core diameter 

n1 is the refractive index of the core. 

n2 is the refractive index of the cladding. 

For V>>1, the number of modes supported by the fiber is given by 

2

2V
N 

 

Refractive index profile: Refractive index profile is the distribution of refractive indices of materials 

within an optical fiber. Some optical fiber has a step-index profile, in which the core has one 

uniformly-distributed index and the cladding has a lower uniformly-distributed index. Other optical 

fiber has a graded-index profile, in which the refractive index varies gradually as a function of radial 

distance from the fiber center.  

Types of optical fiber: 
Based on the refractive index profile, core size and mode of propagation, the fibers are classified into 

three types, namely 

1. Step-index single mode fiber 

2. Step-index multi-mode fiber 

3. Graded-index multi-mode fiber 
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1. Step-index single mode fiber: 

 
A single mode step index fiber consists of a very fine thin core (made of glass material) of uniform 

refractive index n1 is surrounded by a cladding of refractive index n2 lower than that of the core, Since 

there is abrupt change in RI of core and cladding at the interface it is called step index fiber.  The 

diameter of the core is about 8 to 10 µm and that of cladding is about 60 to 70 µm. Since the core size 

is small, the numerical aperture is also small and hence it supports for single mode as shown in the 

figure. This need laser as the source of light. 

2. Step-index multi-mode fiber: 

 
 

Step-index multimode fiber is similar to that of a single mode fiber, but it has a larger core diameter 

and constant refractive index, by the virtue of which it will be able to support for large number of 

modes of propagation as shown in figure. The diameter of the core is about 50 to 200 µm and that of 

the cladding is about 100 to 250 µm. The step-index multi mode fiber can accept either a laser or LED 

as source of light. It is the least expensive of all. They are used in data links. 
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3. Graded-index multi-mode fiber: 

 
 
A graded multimode fiber has concentric layers of RI is called GRIN fiber. That means the RI of the 

core varies with distance from the axis of the fiber. The refractive index of the core along the axis of 

the fiber is maximum and it decreases uniformly on either side of the axis towards the core-cladding 

interface. Hence the refractive index profile follows a parabolic shape and light transmissions in the 

fiber are shown in figure. The diameter of the core and that of cladding are almost same as that of 

multi-mode index fibers. Either a laser or LED's are used as light sources for operating the system. It is 

the most expensive of all and used in telecommunication links. 

Attenuation (Transmission loss or fiber loss): 

 Attenuation is the reduction in power or intensity of light as it travels in the fiber. The reduction may 

be due to light absorption, scattering and radiation losses (extensive fiber bends). The net attenuation is 

given by a factor called the attenuation coefficient ( ) in dB/km and it is defined as optical power 

output to the optical power input for a fiber of length L and a wavelength of the propagating light. 

KmdB
P

P

L in

out /log
10









  

Attenuation in an optical fiber is comparatively less than that in coaxial cables. 

Causes of attenuation: The three mechanism through which attenuation takes place are 

(1) Absorption losses: The absorption losses occur due to the presence of impurities (like Cr, Cu, ions 

trapped within the glass at the time of manufacture) or due to the basic material (glass) itself absorb 

energy at certain wavelength. Typical absorption losses are of the order of 0.1dB/km in the 0.8 to 1.6 

µm wavelength ranges and 0.03dB/km in the 1.3 to 1.6 µm wavelength range. 

(2) Scattering losses: Scattering losses occur due to imperfections and impurities in the fiber material. 

Refractive index changes while the signal travels in the fiber. This sharp variation in refractive index is 

induced by the localized structural inhomogeneity. This type of scattering is same as Rayleigh 
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scattering. Rayleigh scattering occurs whenever a light wave travels through a medium having 

scattering objects whose dimensions are smaller than a wavelength. Thus it becomes a loss. 

(3) Geometrical loss (Radiation loss): 

 

 

 

Geometrical losses occur due to (a) macroscopic and (b) microscopic bends. 

(a) Due to sharp bends, some of the light energy escapes through the cladding and leads to loss in the 

intensity of light ray. 

(b) The microscopic bends cause irregular reflections and some of them then leak through the fiber. 

Applications: 

(1) Fiber Optic Networking: 

 A Local Area Network (LAN) is a type of computer net- work that interconnects multiple 

computers and computer- driven devices in a particular physical location. Traditionally copper coaxial 

cables are used for LAN. 

 

 

Passive optical LANs are built entirely using Optical fiber cables. The passive optical LAN is 

complicated as it works on the concept of optical network terminals (ONT) and passive optical 

splitters. Network switches act as passive splitters and the commercial media converters act as 

optical network terminals in a real-time application of passive optical LAN. 

Macroscopic Bending 
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Advantages: 

1. High speeds and bandwidth 

2. Longer distances are possible 

3. Less chance of errors 

 (2) Fiber Optic Communication: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 A basic of point to point communication system using optical fiber is shown in figure. The 

voice of a telephone user gives rise to electrical signals. These electrical signals are converted to 

binary data using coder. These electrical pulses are converted into pulses of optical power by an 

optical source (such as an LED or laser) in the binary form. 

 Now the light pulses is coupled into the optical fiber at an incidence angle less than that of the 

acceptance angle. The light pulses inside the fiber undergo total internal reflection and reach the other 

end of the fiber and fed into a light detector. Light detector converts the light signals into pulses of 

electric signals (current). These pulses are further decoded into analog electrical signal and converted 

into the usable form like audio or video. 

 

 

 

 

 

 

 

 

Transmitter Channel Receiver Output Input 

Block Diagram 
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Problems: 
 

 (1) Calculate the numerical aperture and angle of acceptance of a given optical fiber if the 

refractive index of the core and cladding are 1.563 and 1.498 respectively. 

Soln.: NA = ?, θa = ? n1 = 1.563 & n2 = 1.498 

2
2

2
1 nnNA   

   22 498.1563.1 NA        

446.0NA  

NASin a   

 446.01 Sina  

05.26a  

(2) An optic glass fiber of refractive index 1.450 is to be clad with another glass to ensure 

internal reflection that will contain light traveling within 5 degree of the fiber axis. What 

maximum index of refraction is allowed for the cladding? 

Soln.: n1 = 1.450, θr = 50 (or i = 90-5 = 850), n2 = ? 

rr nn
n

n  cos  or                   cos 12
1

2   

444.15cos45.12 n  

(3) An optic fiber has a NA of 0.2 and a cladding refractive index of 1.59. Determine the core 

refractive index and also the acceptance angle for the fiber in water which has a refractive 

index of 1.33 

Soln.: NA=0.2, n2=1.59, n1=? , θa=? , n0=1.33 

       NASin a   

  231154.112.0  01   Sina  

2
0

2
2

2
1

n

nn
NA


  

  612.12
2

2
01  nnNAn  

(4) An optical has core refractive index 1.5 and clad refractive index 3% less than that of core. 

Calculate NA, angle of acceptance and internal critical angle. 

Soln.: n1 = 1.5, n2 = 1.5 - (3% of 1.5), NA = ?, θa = ? & θc = ? 

     n2 =1.5 - (0.03 x 1.5) =1.455 

    3647.0455.15.1 222
2

2
1  nnNA  
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    39.213647.011   SinNASina  

93.75
5.1

455.11

1

21 














  Sin

n

n
Sina   

(5) (Isem 2023) The angle of accepatance of an optical fibre is 300 when kept in air. Find the 

angle of accptance when it is in medium of refractive index 1.33 

Soln.: Soln.: θa= 30, n0 = 1.33, θa= ?  

2
2

2
1 nnSin a    

2
0

2
2

2
11     and

n

nn
Sin a


     

2
2

2
1

2
0

2
2

2
1

1 1

nnn

nn

Sin

Sin

a

a









 

0

1 1

nSin

Sin

a

a 



   or   
0

1

n

Sin
Sin a

a

   

33.1

301 Sin
Sin a   or    3759.011  Sina  

08.221 a  

 

(6) A fiber sample 500 m long has an input power of 8.6 micro watt and an output power of 7.5 

µW. What is the loss specification for the cable sample? 

Soln.: L = 500 m = 0.5 km, Pin= 8.6 µW, Pout = 7.5 µW,  ? 

kmdB
P

P

L in

out /log
10









  

kmdB /19.1
6.8

5.7
log

5.0

10









 ,   

(7) The attenuation of light in an optical fiber is estimated to be 2.0dB/km. What fraction of the 

initial intensity remains after 1 km and after 8 km? 

Soln.:  = 2.0 dB/km, ?
1










Kmin

out

P

P
?

8










Kmin

out

P

P

 







 

















 1010or          /log

10
L

in

out

in

out

P

P
kmdB

P

P

L



  

Intensity remaining after 1 km is  

631.010 10

12

1








 





 

kmin

out

P

P
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Intensity remaining after 8 km is  

025.010 10

82

8








 





 

kmin

out

P

P
  

(8) An optical signal propagating in a fiber retains 85% of input power after traveling a distance 

of 500 m in the fiber. Calculate the attenuation coefficient. 

Soln.: 

kmdB
P

P

L in

out /log
10









  

kmdB
L

/412.1
100

85
log

10









  

(8) In a step index fiber, the relative refractive index difference is 2% and refractive index of 

cladding is 1.4. Calculate the refractive index of core and also the critical propagation angle. 

Soln.: ∆=2%=0.02, n2=1.4,  n1=?, θr=? 

1

2

1

21 1
n

n

n

nn



  




1
            1       2

1
1

2 n
nor

n

n
or  

4285.1
02.01

4.1
    1 


 n  

98.0
4285.1

4.1
cos

1

2 
n

n
r  

921148.11)98.0(cos 1  
r  

(9) Consider a slab waveguide made of AlGaAs having RI for core and clad 3.6 and 3.55 

respectively. Find, how many modes can propagate in this waveguide if d = 5λ 

Soln.: n1=3.6, n2=3.55, N=?, d=5λ 

2
2
2

2
1

2

2

1

2 



  nn

dV
N




 

   

4410.44

55.36.3
5

2

1
2

22







 




N

N



 

(10) A step- index optical fiber has a core index of 1.46 and the cladding index of 1.409. If the 

core diameter is 80micro m and the wavelength of the light source is 1.2micro m, determine 

the number of modes present in the fiber. 
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Soln.: n1 = 1.46, n2 = 1.409, d = 80x10-6 m, λ = 1.2x10-6 m, N = ? 

2
2
2

2
12

1




  nn

d
N




 

   

320913.3209

409.146.1
102.1

1080

2

1
2

22

6

6
















 



N

N


 

(11) A single mode step index optical fiber used in communication has a core with refractive 

index 1.45, refractive index change of 5x10-3 and a core diameter of 6µm. If the operating 

wavelength of the communication system is 1.2 micro m, determine the V- parameter of the 

cable. 

Soln.: n1=1.45, ∆ = 5x10-3, d = 6µm = 6x10-6m, λ = 1.2x10-6 m, V = ? 

28.2

105245.1
102.1

106

2

3
6

6

1

2
2

2
1


















V

V

n
d

V

nn
d

V







 

(12) (May22) Calculate NA, Relative RI, V- number and the number of modes in an optical fiber 

of core diameter 50µm and core and cladding RI are 1.41 and 1.40 respectively. Given 

wavelength of source 820 nm. 

Soln.: NA = ?, ∆ = ?,  V = ?, N = ?, d = 50 µm =50x10-6 m, n1 = 1.41, n2 = 1.40,  λ = 820x10-9 m  

    168.040.141.1 222
2

2
1  nnNA                 

3

1

21 1009.7
41.1

40.141.1 






n

nn
       

   
11.32

10820

40.141.11050
9

226
2
2

2
1 




 





nn
d

V                           515
2

)11.32(

2

22


V

N                    

(13) The refractive indices of the core and cladding of a step- index optical fiber are 1.45 and 

1.40 respectively and its core diameter is 45µm. Calculate its relative refractive index 

difference, NA, V- number at wavelength 1000nm and the number of modes. 

Soln.: n1 = 1.45, n2 = 1.40, d = 45 µm = 45x10-6 m, λ=1000 x10-9 m, ∆ = ?,  NA = ?, V = ?, N =? 

0345.0
45.1

40.145.1

1

21 






n

nn
 

    38.040.145.1 222
2

2
1  nnNA  
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72.53
101000

38.01045
9

6
2
2

2
1 




 





nn
d

V  

1443
2

)72.53(

2

22


V

N  

Model Questions:  

1. Define the terms: (i) angle of acceptance, (ii) numerical aperture, (iii) modes of propagation &             

(iv) refractive index profile.  

2. Obtain an expression for numerical aperture and arrive at the condition for propagation.  

3. Explain modes of propagation and RI profile.  

4. What is attenuation? Explain the factors contributing to the fiber loss.  

5. Discuss the types of optical fibers based on modes of propagation and RI profile.  

6. Explain attenuation along with the expression for attenuation co-efficient and also discuss the 

types of fiber losses.  

7. Explain the Fiber Optic Networking and mention its advantages.  

8. Discuss point to point optical fiber communication system and mention its advantages over the 

conventional communication system.  

9. Discuss the advantages and disadvantages of an optical communication. 

Numerical Problems: 

1. Calculate the numerical aperture and angle of acceptance for an optical fiber having refractive 

indices 1.563 and 1.498 for core and cladding respectively.  

2. The refractive indices of the core and cladding of a step index optical fiber are 1.45 and 1.4 

respectively and its core diameter is 45 µm. Calculate its fractional refractive index change and 

numerical aperture.  

3. Calculate numerical aperture, acceptance angle and critical angle of a fiber having a core RI 1.50 

and cladding RI 1.45.  

4. An optical fiber has a numerical aperture of 0.32. The refractive index of cladding is 1.48. 

Calculate the refractive index of the core, the acceptance angle of the fiber and the fractional 

index change.  

5. An optical signal propagating in a fiber retains 85% of input power after travelling a distance of 

500 m in the fiber. Calculate the attenuation coefficient.  

6. An optical fiber has core RI 1.5 and RI of cladding is 3% less than the core index. Calculate the 

numerical aperture, angle of acceptance critical angle. 
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7. The numerical aperture of an optical fiber is 0.2 when surround by air. Determine the RI of its 

core, given the RI of the cladding is 1.59. Also find the acceptance angle when the fiber is in 

water of RI 1.33.  

8. The angle of acceptance of an optical fiber is 300 when kept in air. Find the angle of acceptance 

when it is in medium of refractive index 1.33.  

9. An optical fiber of 600 m long has input power of 120 mW which emerges out with power of 90 

mW. Find attenuation in fiber.  

10. The attenuation of light in an optical fiber is 3.6 dB/km. What fraction of its initial intensity is 

remains after i) 1 km and ii) 3 km ?  

11. The attenuation of light in an optical fiber is 2.2 dB/km. What fraction of its initial intensity is 

remains after i) 2 km and ii) 6 km? 
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Quantum Mechanics 

The branch of mechanics that deals with the mathematical description of the motion and 
interaction of subatomic particles, incorporating the concepts of quantisation of energy, wave –
particle duality, the uncertainty principle and the corresponding principles.  

Introduction: 
At the end of 19th century and in the beginning of 20th century, many new phenomena such as 
photoelectric effect, Compton Effect, pair production, Zeeman Effect, radiation effects, nuclear 
radiations etc., were discovered. Since classical mechanics fails to explain the above 
phenomena, a new physics known as modern physics was developed on the basis of quantum 
theory of radiation. In order to explain the distribution of energy in the blackbody radiation 
Planck introduced the concept of quantum theory of radiation in 1900. 

Radiation: 

Radiation is defined as the energy that travels through space or matter in the form of a particle or 
wave. 
In physics, radiation is the emission or transmission of energy in the form of waves or particles 
through space or a material medium.  
It is a process of transmission of energy from one place to another without the aid of any 
intervening medium. 
Light and heat are types of radiation. Heat radiation is also called thermal radiation. 
                                                    OR 
“Radiation is the emission of electromagnetic waves by matter when supplied with appropriate 
amount of energy”. 
A photon is the smallest discrete packet or quantum of electromagnetic radiation. It is the basic 
unit of all light. 

The basic properties of photons are: 

 A packet or bundle of energy is called a photon 
 The energy of a photon is E = hν = hc/λ 
 The momentum of the photon is p = E/c = h/λ 
 Photon can carry energy and momentum which are dependent on the frequency. 
 The rest mass of the photon is zero and hence they can exist only moving states. 
 They are charge less particles and are not affected by either electric or magnetic field,  
 They are stable and having integral spin (spin-1 particles) which make them as bosons. 
 They can have interactions with other particles such as electrons, protons, neutrons, etc.,  
 They can travel with the speed of light in free space or vacuum. 

Planck’s Quantum Theory of Radiation: 

In the year 1900, Max Planck propounded the quantum theory of radiation. According to this 
theory, the emission and absorption of radiation is not continuous but it is in the form of packets 
of definite and discrete set of energy. Each packet is called the quanta or photon which has a 
definite energy and definite momentum whose value is proportional to the frequency of 
radiation. If ‘ν’ is the frequency of radiation, the energy of each photon is given by, 
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
hc

hvEvE   or                   

 or                   But, 2


h

mc
hc

mcE   

If a photon of mass ‘m’ moving with a velocity ‘c’, then its momentum p = mc 

p

hh
p  


or          

But, if photon of mass ‘m’ moving with a velocity ‘v’, then its momentum is p = mv  

mv

h

p

hh
p  


or          

Where ‘h’ is a universal constant, called the Planck's constant. Its value is 6.625 x 10-34 Js, c is 
the speed of light.  
 

Matter Waves 

Dual Nature of Matter: 

The wave theory of electromagnetic radiation satisfactorily explains the phenomena of 
reflection, refraction, interference, diffraction and polarization. But it failed to explain the 
phenomena of Photoelectric Effect, Compton Effect. 

On the other hand, they were explained on the basis of quantum theory of radiation. According 

to which a beam of light of frequency  consists of small packets each having energy hν called 
photon or quanta. 
Sometimes these photons behave like a waves and sometimes like a corpuscles i.e., particles. 
Thus radiation have dual nature i.e., wave and particle or quantum nature. 
 

Matter waves and their characteristics properties 

In 1924 Louis de Broglie suggested that the particles like protons, electrons, & neutrons in 
motion exhibit characteristic properties of waves. Thus a moving particle can be associated with 
a wave or a wave can guide the motion of the particle. Hence the waves associated with the 
moving particles are known as de-Broglie waves or matter waves. 
According to de-Broglie hypothesis, a particle of mass ‘m’ moving with velocity ‘v’ is 
associated with the wave. This wave is called matter wave. The wavelength of matter wave in 
terms of its momentum ‘p’ is, 

p

h

mv

h
  

1. Matter waves are the waves associated with moving particles. 
2. Lighter the particles, greater is the wavelength associated with it, because   here     

  1/m 
3. Greater the velocity of the particle, smaller is the wavelength associated with the particle.  

  1/v 
4. Matter waves are not electromagnetic waves. Since they don’t depends on the charge of the 

particle. 
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5. The velocity of the matter waves is not constant. But it depends on the velocity of the 
particle. 

6. Light wave has got same velocity, for all wavelengths. But in case of matter waves, the 
velocity is inversely proportional to the wavelength. 

7. It is not possible to determine the exact position and momentum of a moving particle 
simultaneously. 

8. Matter waves are also called as de-Broglie waves (or) pilot waves. 
 

Note: (i) : If a particle of mass ‘m’ moving with a velocity ‘v’, then its kinetic energy                   

E = ½ mv2     or  m2v2 = 2mE  or mEmv 2  

 
mE

h

mv

h

2
  is the expression for deBroglie wavelength in terms of kinetic energy E. 

         (ii) : we know that, if an electron is accelerated under the potential difference of V, then 
the energy acquired by it will be ‘eV’, then 

meV

h

p

h

meVpmeVpor

m

p

m

vm
mveV

2
  

2or            2    

22

1

2

1

2

222
2









 

This is the expression for deBroglie wavelength in terms of accelerating potential V. 
 

Problems:-  

(1) Calculate the de-Broglie wavelength associated with an electron having a kinetic energy 
of 100 eV. 

Data:- ? , E=100eV=100 x 1.602 x10-19J 











 A 228.110228.1

10602.11001011.92

1063.6

2
10

1931

34

m
mE

h  

(2) (May22) Evaluate the de-Broglie wavelength of Helium Nucleus accelerated through a 
potential difference of 500 V. 

Data:- ? , V=500V, m=4mp=4x1.673x10-27kg 











 A640310403.6

50010602.110673.142

1063.6

2
13

1927

34

m
meV

h  

(3) Calculate the de-Broglie wavelength of an electron accelerated under a potential 
difference of 100 V. 

Soln.: ? , V=100V 











 A228.110228.1

10010602.11011.92

1063.6

2
10

1931

34

m
meV

h  
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(4) Compute the de-Broglie wavelength for a neutron moving with one tenth part of the 
velocity of light. Given mass of neutron=1.674x10-27kg. 

Soln.: ? , kgmand
c

v n
2710674.1

10
  

m
mv

h 14
8

27

34

10320.1

10

103
10674.1

1063.6 











  

(5) Find the KE of a neutron which has a wavelength of 3Å. Given its mass=1.674x10-27kg. 

 
  eVJ

m

h
E

mE

h

321
21027

234

2

2

10114.91046.1
10310674.12

1063.6

2
              

2


















 

(6) Estimate the potential difference through which a proton is needed to be accelerated so 
that its de- Broglie wavelength becomes equal to 1 Å, given that its mass is1.673x10-27kg.  

 
  .082.0

10110602.110673.12

1063.6

2
         

2

2101927

234

2

2

V

me

h
V

meV

h
















 

(7) The kinetic energy of an electron is equal to the energy of photon with a wavelength of 
560nm. Calculate the de-Broglie wavelength of the electron. 

?,10560560, 9   


 mnm
hc

hE p
 

eVJ
hc

E
p

217.210552.3
10560

1031063.6 19
9

834





 






 

m
mE

h 10

1931

34

1025.8
10552.31011.92

1063.6

2










  

(8) Calculate the de-Broglie wavelength associated with an electron having a kinetic energy of 
100 eV. 

Soln.: ? , E=100eV=100 x 1.602 x10-19J 

m

mE

h

10

1931

34

10228.1

10602.11001011.92

1063.6

2




















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(9) (May22) Evaluate the de-Broglie wavelength of Helium Nucleus accelerated through a 
potential difference of 500 V. 

Soln.: ? , V = 500V, m = 4mp = 4x1.673x10-27kg 

m

meV

h

13

1927

34

10403.6

50010602.110673.142

1063.6

2















 

(10) Calculate the de-Broglie wavelength of an electron accelerated under a potential difference 
of 100 V. 

Soln.: ? , V=100V 

m

meV

h

10

1931

34

10228.1

10010602.11011.92

1063.6

2















 

(11) Compute the de-Broglie wavelength for a neutron moving with one tenth part of the 
velocity of light. Given mass of neutron=1.674X 10-27kg. 

Soln.: ? , kgmand
c

v n
2710674.1

10
  

m

mv

h

14

8
27

34

10320.1

10

103
10674.1

1063.6

















 

(12) Find the KE of a neutron which has a wavelength of 3Å. Given its mass=1.674X 10-27kg. 

 
 

J

m

h
E

mE

h

21

21027

234

2

2

1046.1

10310674.12

1063.6

2

2






















 

(13) Estimate the potential difference through which a proton is needed to be accelerated so that 
its de- Broglie wavelength becomes equal to 1Å, given that its mass is1.673X 10-27 kg.  
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 
 

.082.0

10110602.110673.12

1063.6

2

2

2101927

234

2

2

V

me

h
V

meV

h



















 

(14) The kinetic energy of an electron is equal to the energy of photon with a wavelength of 
560nm. Calculate the de-Broglie wavelength of the electron. 

?,10560560, 9   


 mnm
hc

hE p  

JE

E

hc
E

p

19

9

834

10552.3

10560

1031063.6
















 

m

mE

h

10

1931

34

1025.8

10552.31011.92

1063.6

2





















 

Wave Packet: A wave packet consisting of waves of slightly differing wavelengths may 
represent the moving particle. Superposition of these waves constituting the wave packet results 
in the net amplitude being modified, thereby defining the shape of the wave group. 

A wave is represented by the formula 

                              )( kxtASiny    

Where y is the displacement at any instant t, A is the amplitude of vibration, ω is the angular 

frequency ( = 2) and k is the wave vector (k = 2/). 

Phase Velocity (vPhase or vp) 

A point marked on a wave can be regarded as representing a particular phase for the wave at that 
point. The velocity with which such a point would propagate is known as phase velocity (or) 
wave velocity. It is represented by  

kpphase


vor        v  

where, ω is angular frequency and k is the propagation constant or wave number 
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Group Velocity (vgroup or vg) 

The velocity with which the resultant envelops of the group of waves travels is called group 
velocity. 
It is denoted by vg or vgroup and is equal to the particle velocity v. 

dk

d
or ggroup


v           v  

 
 

 

Relation between Group Velocity vg and Phase Velocity vp 

The equations for group velocity and phase velocity are given by, 

 1           v 
dk

dw
g  

 2           v 
kp


     

where ω is the angular frequency of the wave and k is the propagation constant or wave vector. 

 3         vp  k  
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   4     v
v


dk

dv
k

dk

kd

dk

dw p
p

p
 

 5         x   But, 
dk

d

d

dv
k

dk

dv
k pp 

  













2
                 

1
2   and

    
2

        
2

    that,know we

2

2







 



dk

d
or

d

dk

k
ork

 










d

dv

dk

dv
kor

d

dv

dk

dv
k

pp

pp

 x                             

 x 
2

x
2

   becomes, (5)eqn 
2






 

On substituting this values in equation (4) we get, 



















d

d
or

d

dV

phase
phasegroup

p
pg

v
v     v

vv

 

This is the relation between group velocity and phase velocity. 

 

Heisenberg’s uncertainty principle 

According to this principle “It is impossible to determine precisely and simultaneously the 
values of both the members of the pair of physical variables, which describe the motion of the 
atomic system”. Such variables are called canonically conjugate variables. 

Example: Position and momentum, energy and time etc., 

Statement: “it is impossible to determine simultaneously both position and momentum of a 
moving particle accurately at same time. The product of uncertainty in these quantities is always 
greater than or equal to h/4π”. 

If ∆x and ∆Px are the uncertainties in the measurement of position and momentum of a particle, 
then  

4
.

h
px x   

If ∆x is small, ∆Px will be large and vice versa. That is if one quantity is measured accurately, 
the other quantity becomes less accurate. 

Similarly the other uncertainty relations for other physical variables pair are,  
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4
.

h
tE   




4
.

h
L   

Applications of Uncertainty Principle: 

*Non-existence of electrons in the nucleus and its implications non-relativistic approach* 

According to theory of relativity, if a particle of mass moving with a velocity v ,then the energy 
E and momentum p of the particle are expressed as, 

 1           and     2  mvpmcE  

where m is the relativistic mass of a particle moving the a velocity v and the expression for it in 
terms of rest mass m0 can be written as, 

 2     
1 2

2





c
v

om
m  

     
1 22

22
0

2
02

2

2

vc

cmm
m

c
v 




  

222
0

222222
0

222 c     x or                )( cmvmcmcmvcm   

    c 42
0

22242 cmvmcm   

Since E = mc2 and p = mv, the above equation becomes 
42

0
22242

0
222 cor        c cmpEcmpE   

   3     or          2
1

22
0

222
0

2  cmpcEcmpcE  

According to Heisenberg’s uncertainty principle we have, 

 4        
.4

or        
4

. 



x

h
p

h
px xx 

 

We know that the size / diameter of the nucleus is of the order of 10-14 m. If an electron is to 

exist inside the nucleus, then the uncertainty in its position x must not exceed the size of the 
nucleus, 

mxei 1410.,.   

Using x in equation (5) we have,  

Ns  105.0
104

1063.6

.4
20

14

34














 x

h
px  

Nspx   105.0 20  

This is the uncertainty in momentum of an electron and it is equal to the momentum of the 
electron inside the nucleus, 
Using momentum value Px in an equation (3) we get, 

      )103()1011.9()105.0(103 2
1

282312208 xxxxxE    
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eV
x

x
JxE

19

12
12

10602.1

105.1
105.1 


   

MeVeVE 4.9.4x109  6   
An electron may exist inside the nucleus if its energy is equal to or greater than 9.4 MeV. But, 
the experimental investigations on β-decay say that kinetic energy of the β–particles is 3 to 4 
MeV. This clearly indicates that, electrons cannot exist within the nucleus. 

)(or                 )( 11 energyenpenergyepn     

Principle of Complementarity 

Statement: Bohr stated as “In a situation where the wave aspect of a system is revealed, its 
particle aspect is concealed; and in a situation where the particle aspect is revealed, its wave 
aspect is concealed. Revealing both simultaneously is impossible; the wave and particle aspects 
are complementary.” 

Explanation: We know that the consequence of the uncertainty principle is both the wave and 
particle nature of the matter cannot be measured simultaneously. In other words, we cannot 
precisely describe the dual nature of Light. 

• If an experiment is designed to measure the particle nature of the matter, during this 
experiment, errors of measurement of both position and the time coordinates must be zero and 
hence the momentum, energy and the wave nature of the matter are completely unknown. 

• Similarly, if an experiment is designed for measuring the wave nature of the particle, then the 
errors in the measurement of the energy and the momentum will be zero, whereas the position 
and the time coordinates of the matter will be completely unknown. unknown. 

From the above explanation, we can conclude that, when the particle nature of the matter is 
measured or displayed, the wave nature of the matter is necessarily suppressed and vice versa. 

Problems:                      

1. If the group velocity of a particle is 3x106 m/s, calculate its phase velocity.                          
(Given, c = 3x108 m/s). 

     ?    v,/ 103   ,/103   , 86  pg smcsmvGiven  

 
  sm

V

c
Vor

cVVtkw

group
phase

phasegroup

/103
103

109

103

103
   

          ;..

10
6

16

6

282

2












 

2. Calculate the de-Broglie wavelength associated with a proton moving with a velocity equal to 
1/20 th of the velocity of light, if the mass of the proton is 1.67x10-27 kg. 

      ?   ,1067.1   ,103
20

1

20

1
    v, 278  

pp kgmcGiven   

m

mv

h
tkw

p

p

14
827

34

827

34

10646.2
1031067.1

1063.620

103
20

1
1067.1

1063.6

,..


























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3. Find the kinetic energy and group velocity of an electron with de-Broglie wavelength of 0.2 
nm. 

     kgmVEKmnmGiven egroup
319 101.9  ?,   ?,.   ,102.0 2.0   ,    

smkg
h

p

p

h
tkw

/10315.3
102.0

1063.6

  ;..

24
9

34

















 

 
J

m

p
EEK 18

31

2242

10038.6
101.92

10315.3

2
. 









  

sm
m

p
VorV groupg /1064.3143.3642857

101.9

10315.3 6
31

24





 



 

5. If the uncertainty in the position of an electron is 4x10-10 m, calculate the uncertainty in its 
momentum. 

        ?     ,104   , 10  
xPmxGiven  

4
...w

h
pxtk x   

125
10

34

10318.1
10414.34

1063.6

4













 kgs

x

h
px 

  

 

6. In a simultaneous measurement of position and velocity of an electron moving with a speed of 
6x105 m/s. Calculate the highest accuracy with which its position could be determined if the 
inherent error in the measurement of the velocity is 0.01% for the speed stated. 

       ?    %,01.0%   ,/106   , 5  xvelocityinerrorofsmvGiven  

15 60106
100

01.0
100

%
100

100
int

int









msv

v
velocityofmeasurmenttheinerrorof

v

velocity
velocityintyuncertainiofpercentage

velocityintyuncertaini

velocity

velocityinyuncerta
velocityinyuncertaofpercentage

 

nmm
vm

h
x

h
pxtk

x

x

9661066.9
60101.9142.34

1063.6

..4

4
.    ;..w

7
31

34



















  

7. An electron has a speed of 300 m/s accurate to 0.01% with what fundamental accuracy can we 
locate the position of the electron. 

     0.01 = speedin accuracy  of  %  and   ?   ?,   m/s, 300=V   Given,  vx  
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smv

smvvvofv

/103

/03.0300
100

01.0

100

01.0
or        %01.0

2


 

mx

vm

h

p

h
x

h
px

x
x

3
231

34

10932.1
103101.9142.34

1063.6

..44
or         

4
.

w.k.t



















 

The maximum accuracy with which the electron can be located is 1.932 x 10-3 m. 

8. The speed of electron is measured to within an uncertainty of 1x104 m/s. What is the 
minimum space required by the electron to be confined in an atom? 

      ? ,/101 Given, 4  xsmv  

0
10

9
431

34

97.571097.57

10797.5
101101.9142.34

1063.6

..44

4
.     w.k.t;

Amx

m
vm

h

p

h
x

h
px

x

x




























 

9. The position and momentum of 1keV electron are simultaneously determined and if its 
position is located within 1Å. What is the minimum percentage of uncertainty in its 
momentum?   

       
    ?100 ,   ?       1011

J 101.602x =E  J, x1.602x101x10=E , eV1x10=E  1keV,=E  Given,

10
0

-16-1933




 

P

P
PmAx

 

125
10

34

k  10275.5
10142.34

1063.6

4
      

4
.     ;..

















gms
x

h
P

h
pxtkw

x

x



  

123

1631

10707.1

10602.1101.922

momentum,for equation   thehave we









mskgP

mEP  

1.3087.3100
10707.1

10275.5

100

23

25













momentumintyuncertainiofPercentage

momentum

momentumintyUncertaini
momentumintyuncertainiofPercentage

 

10. The inherent uncertainty in the measurement of time spent by Iridium -191 nuclei in the 
excited state is found to be 1.4x10-10s. Estimate the uncertainty that results in its energy in the 
excited state. 
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 ?    ,104.1   , 10   EstGiven  

eVeVE

J
t

h
E

h
tE

6
19

25

25
10

34

10353.2
10602.1

10768.3

10768.3
104.1142.34

1063.6

.4
     

4
.     w.k.t;
































 

11. The average time that an atom retains excess excitation energy before re- emitting it in the 
form of electromagnetic radiation is 10-8s. Calculate the limit of accuracy with which the 
excitation energy of the emitted radiation can be determined. 
                                                (OR)  
What is the minimum uncertainty in the energy state of an atom if an electron remains in this 
state for 10-8 seconds? 

     ?   ,104.1   , 10   EstGiven  

eVeVE

J
t

h
E

h
tE

8
19

27

27
8

34

10292.3
10602.1

10275.5

10275.5
10142.34

1063.6

.4
    

4
.   ;w.k.t
































 

12. An electron is confined to a box of length 10-8m. Calculate the minimum uncertainty in its  
      velocity.  

       mxvGiven 810   ?   ,   

smv

sm
xm

h
v

x

h
vm

x

h
Po

h
pxtkw

x

xx

x

/5800

/03.5797
101.910142.34

1063.6

..4
   

.4
.or         

4
r   

4
.   ;..

318

34






























 

(13) If the kinetic energy of an electron known to be about 1eV, must be measured to within 
0.0001eV, What accuracy can its position be measured simultaneously? 

Soln.: E = 1eV = 1.602x10-19J, ΔE = 0.0001eV = 0.0001x1.602x10-19J, Δx = ? 

 

E
E

m

EmmEP

mEPand
h

XP









2

22
2

1

2
4

2
1


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m

X

m

E

E

h
X

6

3119

1934

1095.1

101.910602.10001.04

10602.121063.6

21

4




















 

(14) Uncertainty in time of an exited atom is about 10-8s. What are the uncertainties in energy 
and in frequency of the radiation? 

Soln.: Δt = 10-8s, ΔE = ?, Δ = ? 

Hz

h

E

hE

hE

J

t

h
E

h
tE

6

34

27

27

8

34

1089.7

1063.6

1023.5

1023.5

104

1063.6

.4

4













































 

(3) (May22) The position and momentum of an electron with energy 0.5 keV is found with a 
minimum percentage uncertainty in momentum. Find its uncertainty if the measurement of 
position has an uncertainty of 0.5Å. 

Soln.: E=0.5keV=0.5x103x1.602x10-19J, Percentage uncertainty in momentum = ?,                                   

           ∆x =0.5x10-10 m. 

2324

19331
10

34

10207.110055.1

10602.1105.0101.92
105.04

1063.6

2
4

2
4























PandP

PandP

mEPand
X

h
P

mEPand
h

XP






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Questions 

Short Answer Questions 

1. What is Planck’s law of radiation? 
2. List out the characteristics of matter waves. 
3. State and explain Planck’s law of radiation. 
4. What are matter waves? 
5. Define phase velocity and group velocity. 
6. Obtain an expression for deBroglie wavelength. 
7. State and Explain deBroglie hypothesis. 
8. What are matter waves and mention their properties? 
9. Derive the relation between Phase velocity and Group velocity. 
10. What is de-Broglie concept of matter wave? Explain the characteristics of matter wave. 
11. Define phase velocity and group velocity & obtain a relation between them. 
12. State Heisenberg Uncertainty Principle. 
13. Show that the electron does not exists inside the nucleus of an atom. 
14. Explain the principle of complementarity. 
15. State and Explain Heisenberg’s uncertainty principle.  
16. Explain why electron cannot exist inside the nucleus? 
17. State and Explain the Principle of Complementarity. 

Problems: 

1. Compare the energy of photon with that of an electron when both are associated with a 
wavelength of 0.2 nm. 

2. Calculate the deBroglie wavelength of a 1000 kg automobile travelling at 100 m/s and a 0.1 
kg bullet travelling at 500 m/s. 

3. A fast moving neutron is found to a have an associated deBroglie wavelength of 2x10-12 m. 
Find its kinetic energy and group velocity of the deBroglie waves using the relativistic 
change in mass. (Mass of neutron = 1.675x10-27 kg) 

6. Calculate the deBroglie wavelength associated with an electron with a kinetic energy of 2000 
eV. 

7. Calculate the momentum and the deBroglie wavelength of the particle associated with an 
electron with a kinetic energy of 1.5 keV.  

8. Calculate the wavelength associated with an electron having kinetic energy 100 eV.  

9. Calculate deBroglie wavelength associated with electron carrying energy 2000 eV.  

10. Find the energy of the neutron in eV whose deBrogle wavelength is 1 Å.  

11. Calculate deBroglie wavelength associated with neutron of mass 1.674×10−27 kg with 1/10th 
part of speed of light.  
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12. Calculate deBroglie wavelength associated with electrons whose speed is 0.01 part of the 
speed of light.  

13. What is the deBroglie wavelength of a proton whose energy is 3eV given mass of proton is 
1.67×10−27 kg.  

14. Find the kinetic energy and group velocity of an electron with deBroglie wavelength of 0.2 
nm.  

15. Calculate the deBroglie wavelength of particle of mass 0.65 MeV/c2 has a kinetic energy 80 
eV.  

16. Find deBroglie wavelength of a particle of mass 0.58 MeV/c2 has a kinetic energy 90 eV, 
where c is speed of light.  

17. A particle of mass 940 MeV/c2 has kinetic energy 0.5 keV. Find it deBroglie wavelength, 
where c is speed of light.  

18. Find the deBroglie wavelength of an electron accelerated through a potential difference of 
182 V and object of mass 1 kg moving with a speed of 1 m/s. Compare the results and 
comment.  

19. The position and momentum of an electron with energy 0.5 keV are determined. What is the 
minimum percentage uncertainty in its momentum if the uncertainty in the measurement of 
position is 0.5Å? 

20. The speed of electron is measured to within an uncertainty of 2.2×104 m/s in one dimension. 
What is the minimum width required by the electron to be confined in an atom?  
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Wave Function 

Introduction:  

In general, a wave is characterised by periodic variation in some physical quantity. 

For example – pressure varies periodically in sound waves whereas electric and magnetic fields 
vary periodically in an electromagnetic wave. Similarly, whose periodic variations make up the 
matter wave is called wave function. 

Wave Function: 

The variable quantity that characterises the deBroglie wave is called wave function. Wave 
function in quantum mechanics accounts for the wave like properties of particle and is obtained 
by solving a fundamental equation called Schrödinger’s equation. 

The wave functions vary with respect to both position co-ordinates of the physical system and 
the time (x, y, z & t) is called total wave function. 

It is denoted by the capital form of Greek letter ‘Ψ’. If the wave function has variation only with 
position (x, y, z) it is denoted by the lower case Greek letter ‘ψ’. 

The total wave function can be mathematically represented by the equation 

)( txkiAe   

Where A is a constant and w is the angular frequency of the wave 

The above equation can be written as  

tiikx eAe   

Where, ikxAe is the space dependent wave function and is therefore time independent wave 

function. tie  is the time dependent wave function. 

The wave function ψ is a measure of finding the particle at a particular position (x, y, z) and at 
time t. 

The following are the basic properties of wave function: 

1. The wave function ψ itself does not have any physical significance. 

2. ψ is a positive or negative or complex quantity and hence it cannot be measured. 

3. ψ is a function of space and time (r, t) coordinates and describes the behaviour of a single 
particle or photon and wave nature. 

4. ψ is a large magnitude where the particle (Photon, electron etc.,) to be located and small at 
other places. 

5. The probability of finding a particle at some point in space at time ‘t’ is a positive value 
between 0 & 1; i.e., |ψ|2 is real and +ve between 0 & 1. 
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Probability Density: 

In classical mechanics, the square of wave amplitude associated with electromagnetic radiation 
is interpreted as measure of intensity. This suggests there will be a similar interpretation for de-
Broglie waves associated with electron or any particle. 

Let τ be a volume inside which a particle is present, but where exactly the particle is situated 
inside τ is not known  

“If ψ is the wave function associated with the particle then the probability of finding the particle 
in certain volume dτ of τ is equal to |ψ|2 dτ. So |ψ|2 is called the probability density”. 

|ψ|2 dτ 

This interpretation was first given by Max Born in 1926. 

If the value of |ψ|2 is large at a point in a given time, then the probability of finding the particle at 
that point and time is more. If |ψ|2 = 0, then the probability of finding the particle is zero or less. 

Therefore the total wave function can be represented by the equation, 

 1)(   txkiAe   

where A is a constant, ω is angular frequency of the wave 
The complex conjugate of Ψ is given by, 

 2)(*   txkiAe   

From equation (1) and (2), ΨΨ* is real and positive quantity which is called the probability 
density. 

2*2
 i.e, A  

Therefore 2 dx is the probability density in 1- dimension, 

and 2 dv is the probability density in 3-dimension.  

Normalization: 

According to Born’s interpretation the probability of finding the particle within an element of 

volume is2 dv, since the particle is certainly present somewhere inside the volume dv. 

Therefore “The integral of the square of the wave function over the entire volume in space must 
be equal to unity” and mathematically it is represented as, 

1vψ
2 





d  

Where, the wave function satisfying the above relation is the normalized wave function. 

Very often Ψ is not a normalized wave function. If this function Ψ is multiplied by a constant A, 
then the new wave function AΨ is also a solution of the wave equation. Hence the new wave 
function is a normalized wave function, if 

1vor        1v *2  








 dAdAA   
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





v

1

*

2

d

A



 

Where A2 is known as normalizing constant, the quantity A2 represents probability. 

Therefore, the process of constructing AΨ from Ψ is called normalization of the wave function. 

Limitations of wave function:  

1. The wave function Ψ must be finite for all values of x, y, z and it is finite for a particular 
point. 

2. Ψ must be single valued everywhere for each set of x, y, z and must have unique value. 

3. Ψ must be continuous in all regions except where the potential energy V is infinite. 

4. Ψ and its first derivatives dΨ/dx, dΨ/dy, dΨ/dz must be continuous and single valued 
everywhere. 

5. Ψ must be normalised and in order that 2 dv over all space be a finite constant. 

Expectation Value 

In quantum mechanics, the expectation value is the probabilistic expected value of the result 

(measurement) of an experiment. It can be thought of as an average of all the possible 

outcomes of a measurement as weighted by their likelihood. Expectation value as such it is not 

the most probable value of a measurement. In the real sense the expectation value may have 

zero probability of occurring.  

Let us consider a particle moving along the x axis. The result of a measurement of the position 

x is a continuous random variable. Consider a wave function Ψ (x, t). The | Ψ (x, t)|2 value is a 

probability density for the position observable and | Ψ (x, t)|2dx is the probability of finding the 

particle between x and x+dx at time t. Thus, if a measurement of position is repeated many 

times in an identical way on an identical particle in identical circumstances, many possible 

outcomes are possible and the expectation value of these outcomes is, according to the 

following equation 

dxxx 




 2
 t)(x,   
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Properties of Wave Functions:  

A system is characterised by its position, energy, momentum etc,. In quantum mechanics, the 
state of a system is completely characterised by a wave function. 

Physically acceptable wave function Ψ must satisfy the following conditions, 

1. Ψ is single valued everywhere 

 

If Ψ has more than one value at any point (at P, Ψ has f1, f2 and f3) it would mean more than 
one value of probability of finding the particle at that point which is obviously ridiculous. 
Therefore, Ψ must be single valued everywhere. 

2. Ψ is finite everywhere 

 

If Ψ is infinite at a point R there will be large probability of finding the particle at that point. 
This violates the uncertainty principle, therefore Ψ must have a finite or zero value at that point. 

3. Ψ and its first derivatives d/dx with respect to its variables are continuous everywhere 

 
Ψ and its first derivatives must be continuous. Since the probability can have any value between 
zero and one, the wave function must be continuous. 
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Schrodinger’s Time Independent One Dimensional Wave Equation 

Based on de-Broglie idea of matter waves, Schrödinger developed a mathematical theory for a 
particle of mass ‘m’ moving with a velocity ‘v’ along x-direction associated with a wave of 
wavelength, 

p

h

mv

h
  

 Where, p = mv is the momentum of the particle. 

Let a wave function Ψ describing the de-Broglie wave travelling in +ve   x-direction is given by, 

 1)(   txkiAe   

 Where Ψ is a total wave function, A is a constant and ω is angular frequency of wave. 

Let us differentiate Ψ (in equation 1) twice with respect to ‘x’ then 

)()( txkieikA
dx

d    

)(2
2

2

)( txkieikA
dx

d    

  12          0             22
2

2
2

2

2

 ik
dx

d
ork

dx

d
  

mv

h
andkBut  


2  

2

222
2 4

or        
2

h

vm
k

h

vm
k


  

Hence equation (2) becomes, 

 3    0
4

2

222

2

2

 
h

vm

dx

d  

The total energy E of the particle is the sum of kinetic energy T and potential energy V,  
VTE   

 4    )V   2(E or   

    )(
2

1
       

2

1
But

2

22





mv

VEmvmvT
 

Substitute this value of mv2 in equation (3) we get 

 50)(
8

2

2

2

2

 
VE

h

m

dx

d  

This is known as time independent 1 - dimensional Schrödinger equation. 

Equation (5) can also be extended for 3-dimensional space as, 

 60)(
8

2

2

2

2

2

2

2

2

 
VE

h

m

dz

d

dy

d

dx

d  

 70)(
8

2

2
2   VE

h

m
or   

2

2

2

2

2

2
2

dz

d

dy

d

dx

d
where   
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Equation (6) and (7) are the 3-dimensional time independent Schrödinger wave equation, where 
Ψ is Ψ(x, y, z ). 

Eigen Functions and Eigen Values 

“Eigen functions are those wave functions of quantum mechanics which possess the properties 
that they are single valued, finite everywhere and also their first derivatives with respect to their 
variables are continuous everywhere”. 

When the Eigen functions are operated by quantum mechanical operators on physical quantities 
like momentum, energy etc., of a system, the possible values are observed and these values are 
called Eigen values”. 

Ex: 1. If an operator say d/dx operates on a wave function  = eax, then 

 aae
dx

de xa
xa

 

That is it produces the wave function multiplied by a constant. Such values obtained for a 
physical observable are called Eigen values. 

Here ‘a’ is the Eigen value &   = eax is the Eigen function. 
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Applications of Schrödinger wave equation to particle trapped in a one dimensional square 
potential well 

*** (Derivation of energy Eigen values and Eigen functions) *** 

 

Consider a particle of mass ‘m’ moving with a speed ‘v’ along x-axis is confined to a box of 
length ‘L’ with perfectly rigid walls at x = 0 & x = L as shown in the figure. 

The particle does not lose energy when it collides with the walls so that its total energy remains 
constant. The potential energy V of the particle is constant within the box which can be taken to 
be zero for convenience. 

 100  LxforV  

The potential energy of the particle is infinite on and beyond the walls of the box. 
 20  LxandxforV  

As the particle does not exist on the walls and beyond them, the wave function  is zero. 
 300  Lxxfor  

The wave function  exists within the box only. 

 The Schrödinger’s time independent wave equation is, 

   40
8

2

2

2

2

 
VE

h

m

dx

d  

For the particle exists inside the box, V = 0    

 Equation (4) becomes 

 50
8

2

2

2

2

 
E

h

m

dx

d
 

 6
8

let    2
2

2

 k
h

mE  

Equation (5) becomes 

 702
2

2

 
k

dx

d  

This is the second order differential equation. The general solution of this equation is given by,  
 8cossin  xkBxkA  

where, A & B are arbitrary constants, which are to be evaluated by using boundary conditions. 

From the first boundary conditions,  = 0 at x = 0, Equation (8) becomes, 

0cos0sin0 BA   
0 B  have    we,10cos&00sinSince,   

x

0V   ψ, 

vm ,
x
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 Equation (8) becomes,  
 9sin  xkA  

From second boundary conditions,  = 0 at x = L,  Equation (9) becomes,   
kLAsin0                  

OR 
0sin kLA  

. . . . . . . 3, 2, 1, =n  whereof  valuesallfor0sin,0 nkLklA   

 10
L

n
k


 

By substituting the value of k in equation (9) we get general wave function called Eigen wave 
function and Eigen energy equation.  

 11sin 





 x

L

n
An

  

This is known as Eigen function or Eigen wave function.  
Similarly by substituting the value of k in equation (6) we get, 

2

22

2

22

2

2

8
or        

8
  

mL

hn
E

L

n

h

mE



 

 12     
8

      generalIn 
2

22


mL

hn
En  

This is the expression for Eigen values or Eigen energy values. 

Thus, we see that in a potential well the particle cannot have an arbitrary energy, but it can have 
only discrete energy values corresponding to n = 1, 2, 3 ... are the Eigen values. 

According to equation (11) if n = 0, n = 0, which means that the particle doesn’t present inside 
the box, which is not true. The value of En= 0 for n = 0 is not acceptable. Hence the lowest 
allowed energy corresponding to n = 1 is called the ‘zero-point energy or ground state energy’. 
Thus zero-point or ground state of energy of the particle in an infinite potential well is given by, 

2

2

1 8mL

h
E   

The energy states corresponding to n >1 are called excited states. 

Normalization: 

To evaluate A in Eigen function n, one has to perform the normalization of the wave function. 

The allowed solutions of the Schrödinger equation are the Eigen functions, according to the 
equation. 

 13sin 





 x

L

n
An

  

The complex conjugate of equation (13) is, 

 14sin 





 x

L

n
An

  

To find the value of A, we use the normalization condition. 
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 








  1    .,.
2
dxdxei nn   

In this case, the particle exists only within the box of length (L). The above equation can be 
written as,  

 
L

n dx
0

2
1  

 By substituting the values of n and n
* in the above equation, we get 

1sin
0

22  dxx
L

n
A

L   





 







  2

2cos1
sin                    1

2
cos1

2

1 2

0

2 A
Adxx

L

n
A

L


  

1
2

cos
2 0 0

2









  xdx

L

n
dx

A L L   

1
2

sin
22 0

2

















L

x
L

n

n

L
x

A 


 

  0 = sin2n n, of any valuefor  Here,     1002sin
22

2








  n

n

L
L

A  

L
A

L
A

LA 2
or

2
or        1

2
2

2

  

Thus, by substituting the value of A in equation (13) we get normalized wave functions or Eigen 
function of a particle in one dimensional infinite potential well. 

 15sin
2







 x

L

n

Ln

  

The first three eigen functions 1, 2, 3 together with the probability densities 
2

1 ,
2

2 ,
2

3  
and eigen values E1, E2, E3 are as shown in figure (a), (b) & (c) respectively for n = 1, 2 & 3. 

For n = 1, this is the ground state and the particle is normally found in this state. 

x
L

A 






 sinfunction  Eigen 1

 

Ψ1= 0 for both x = 0 and x = L and Ψ1 has maximum value A for x = L/2                

  At x = 0 and x = L, |1|
2 = 0 it means that the particle does not exist at the walls. 

|1|
2 is maximum at x = L/2, it means that the particle exist at the centre of the well. 

2

2

1 8mL

h
E   

This is the energy eigen energy value for ground sate.  

For first excited state, n = 2  

x
L

A 






 2

sin    2
 

 Ψ2 = 0 for x = 0, L/2 and L and Ψ2 reaches maximum value for x = L/4 and 3L/4. 

At x = 0, L/2 and L, |2|
2 = 0 it means that the particle does not exist at 0, L/2 and L. 
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  |2|
2 is maximum at x = L/4 and 3L/4 

Energy Eigen values can be calculated by using equation, 

122

2

2 4EEor         
8

4


mL

h
E  

This is the equation to calculate the energy of the particle in first excited state. 

For second excited state, n = 3 

x
L

A 






 3

sin3  

Ψ3 = 0 for x = 0, L/3, 2L/3 and L, and Ψ3 reaches maximum value for x = L/6, L/2 and 5L/6. 

At x = 0, L/3, 2L/3 and L, |3|
2 = 0 it means that the particle does not exist at 0, L/3, 2L/3 and L. 

|3|
2 is maximum at x = L/6, L/2 and 5L/6. 

Energy Eigen values can be calculated by using equation, 

132

2

3 9or         
8

9
EE

mL

h
E   

This is the equation to calculate the energy of the particle in second excited state. 

 

Problems: 

1. Calculate the zero point energy for an electron in a box of width 10Å. 

     ?=Eor E  m,10x10=A10=L  , 0 1
10-

0

Given                    

 
 

eVeVE

J
mL

h
E

mL

hn
Etkw n

376.0
10602.1

10038.6

10038.6
1010101.98

1063.6

8

1=n state groundfor 
8

     ;..

19

20

1

20
21031

234

2

2

1

2

22























  

2. An electron is bound in a one dimensional potential well of width 1Å, but of infinite height. 
Find the energy value for the electron in the ground state. 

      ?=Eor E    , m1x10=A1=L  , 0 1
10-

0

Given  

FunctionsWave

aFig )(
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                   
 

eVeVE

J
mL

h
E

mL
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Etkw n
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8
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19

18

1

18
21031

234

2

2

1

2

22








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












  

3. An electron is trapped in a one-dimensional box of length 0.1 nm. Calculate the energy 
required to excite the electron from its ground state to the 2nd excited state.  

?=Eor E , m0.1x10=nm 0.1=L   , 0 1
-9Given  

 
 

 
 

eVEE
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mL

h
E

eVeVE

J
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h
E
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Etkw n
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1063.69

8

9

3=n state excited 2ndfor 
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10038.6

10038.6
101.0101.98

1063.6

8

1=n state groundfor 
8

    ;..

13

2931

234

2

2

3

19

18

1

18
2931

234

2

2

1

2

22





































 

       
eVE

eVEEE

528.301

691.37219.339

is, state excited 2nd  the tostate ground its fromelectron   theexcite  torequiredenergy  The

13


  

4. Calculate the lowest energy of the system consisting of three electrons in a one - dimensional 
potential box of length 1Å. 

      ?=Eor E  , m1x10=A 1=L   , 0 1
10-

0

Given  

 
 

eVeVE

J
mL

h
E

mL

hn
Etkw n

07.113
10602.1

108114.1

108114.1
101101.98

1063.6

8

1=nenergy lowest for 
8

   ;..

19

17

1

17
21031

234

2

2

1

2

22
























 

5. An electron is constrained to a one-dimensional box of side 1nm. Calculate the first 3-eigen 
values in electron volt.  
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        ?E   ?,E  ?,=Eor E  , m1x10=nm 1=L   , 320 1
-9 Given  

 
 

eVeVE

J
mL

h
E

mL

hn
Etkw n

376.0
10602.1

10038.6

10038.6
101101.98

1063.6

8

1=n state groundfor      ,
8

   ;..

19

20

1

20
2931

234

2

2

1

2

22
























 

eVEE

eVEE

384.3376.099

504.1376.044

3=n & 2 =n state excited 3rd & 2ndFor 

13

12



  

6. An electron is trapped in one-dimensional infinite potential box of width 0.1nm. Calculate 
its wavelengths and energies corresponding to first two excited states. 

        ?  ?,  ?,E  ?,E  , m0.1x10=nm 0.1=L   , 3232
-9  Given  

 
 

 
 

eVeVE

J
mL

h
E

eVeVE

J
mL

h
E

mL

hn
Etkw n

215.339
10602.1

104354.5

10434.5
101.0101.98

1063.69

8

9

3=n state excited secondfor 

76.150
10602.1

10415.2

10415.2
101.0101.98

1063.64

8

4

2=n state excitedfirst for 
8

   ;..

19

17

3

17
2931

234

2

2

3

19

17

2

17
2931

234

2

2

2

2

22















































 

nmmm

L

nmmL

L

n

L
n

 066.010066.010666.6

3

101.02

3

2

3=n state excited secondFor 

1.0101.0

2

2

2=n state excitedfirst For 

2
      w.k.t;

911
3

9

3

9
2

2




























 

7. An electron is trapped in one-dimensional infinite potential box of width 0.15nm. Calculate 
the amount of energy required to excite an electron from ground state to 3rd excited state.  

?EE E  , m0.15x10=nm 0.15=L   , 23
-9 Given  
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     
 

eVeV
x

E

x
x

mL

h

mL

h

mL

h
EEE

mL

hn
Etkw n

68.5
10602.1

10102.9

10102.9
1015.0101.98

10626.615

8

116

88

4

4=n state excited for third and 1n state groundfor 
8

   ;..
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19
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2931
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2

2

2

2

2
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2

22





























 

8. A quantum particle confined to one dimensional box of width ‘a’ in its first excited state. 
What is the probability of finding the particle over an interval of ‘a/2’ marked 
symmetrically at the centre of the box? 

  Soln. 
 

   

 

 

9. The ground state energy of an electron in an infinite well is 5.6 MeV. If the width of the 
well is doubled, calculate the ground state energy. 

Given data:  ,2?,106.5 6.5 1
3

1 aawidthwhenEawidthwheneVmeVE II    

 
 

meVeV
E

E

E

E

am

h
E

ma

h
E

I

I

I

 4.1104.1
4

106.5

4

4

1

1
2

1

28
&

8

3
3

1
1

2

1

1

2

2

12

2

1













 

10. An electron is trapped in a 1-D potential well of infinite height and of width of 0.1nm. 
Calculate the energy required to excite it from its ground state to fifth excited state. 

Given data: a = 0.1nm = 0.1x10-9m, E = E6-E1 = ?  

x=0 x=a 

n=2 2 
2 

1 
2 

n=1 

 a/2 a/4  3a/4 

x=a/2 

The probability of finding the particle can be obtained 
by  

  
2

-
dxp nn 




   

Let a particle be in box of width ‘a’,. let p2 be the probability occupation in the region (a/2 = 3a/4 
- a/4) symmetrically at the centre therefore the probability of finding the particle in this region in 
first excited state is obtained by  

   xdxdxxdxp aaa
n

a
 223a/4

a/4

2
23a/4

a/4

2
23a/4

a/4 22 sin    sin    

     3a/4

a/4
2

22

3a/4

a/4
1

3a/4

a/4

2
2
12

2 sin2- cos2-1 xxdxxp ax
a

aaa



    

       %505.00- 0a/2a/4sin2- 3a/4sin2a/4-3a/4 2
112

22
2

22
1

2  aax
a

ax
a

ap 



  

The probability of occupation in the region a/2 at the centre of the box in the 1st excited state is 
50%. 
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2

22

8ma

hn
E     (Note: when n=1 ground state, n-6 for 5th first excited state) 

 
 

6,5

69.3710038.6
101.0101.98

1063.61
    18

2931

2342

1







 





nstateexcitedthFor

eVJEstateGround
 

 
  eVJE 135710174.2

101.0101.98

1063.66 16
2931

2342

6 



 





 

          eVeVeVEEE  31.131969.37135716   

 
Questions:  

1. Define wave function? Mention its basic properties.  

2. What is a wave function? Explain its physical significance.  

3. Discuss the physical interpretation of wave function?  

4. Discuss about probability and normalisation condition. 

5. Set up time independent Schrödinger’s wave equation. 

6. Derive Time independent Schrodinger wave equation for a particle moving in one 
dimension.  

7. Explain the significance of wave function and set up time independent Schrödinger’s wave 
equation.  

8. Describe Eigen functions and Eigen values. 

9. Derive the expressions for eigen values and eigen functions of a particle in one dimensional 
potential box.  

10. Solve Schrödinger wave equation for allowed energy values in case of a particle in a 
potential box.  

11. Obtain the expression for normalised wave function for a particle in one dimensional 
potential box.  

12. Assuming the time independent Schrödinger’s wave equation, discuss the solution for a 
particle in one dimensional potential well of infinite height, 

13. Discuss and mention the energy eigen values, eigen wave functions and probability 
densities for a particle in 1-dimensional box for atleast 3 states. 

14. Discuss the energies of a free particle using time independent Schrodinger equation. 
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Problems: 

1. An electron is confined to a one dimensional box of width 1 nm. Calculate the first three 
Eigen values in eV. 

2. An electron is bound in a one dimensional box of width 4 X 10-10 m. compute the energy 
and de-Broglie wavelength of ground and first excited states. 

3. Find the energy of an electron in the ground state, when it is trapped in an infinite potential 
well of width 2Å. 

4. An electron is bound in one dimensional potential well of width 1Å but of infinite height. 
Find its energy values in ground state and first two exited states. 

5. Estimate the time spent by an atom in the excited state during the excitation and de-excitation 
processes, when a spectral line of wavelength 546 nm and width 10−14 m is emitted.  

6. An electron is confined to a box of length 10−9 m, calculate the minimum uncertainty in its 
velocity. 

7. The position and momentum of 1 keV electron are simultaneously determined. If it position is 
located within 1Å, find the uncertainty in the determination of its momentum.  

8. A spectral line of wavelength 4000 Å has a width of 8 × 10−5Å. Evaluate the minimum time 
spent by the electrons in the upper energy state between the excitation and de-excitation 
processes.  

9. The inherent uncertainty in the measurement of time spent by Iridium 191 nuclei in the 
excited state is found to be 1.4×10−10s. Estimate the uncertainty that results in its energy in 
eV in the excited state.  

10. An electron is bound in one dimensional potential well of width 0.18 nm. Find the energy 
value in eV of the second excited state.  

1  1. The first excited state energy of an electron in an in finite well is 240 eV. What will be its 
ground state energy when the width of the potential well is doubled?  

12. A quantum particle confined to one–dimensional box of width ‘a’ is in its first excited state. 
What is the probability of finding the particle over an interval of a/2 marked symmetrically 
at the center of the box. 
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Free Particle 

Energy Eigen values for a free particle: 

Free particle means, it is not under the influence of any kind of field or force. Thus it has zero 
potential, i.e., V = 0. 

Hence Schrödinger’s equation becomes, 

0)(
8

2

2

2

2

 
VE

h

m

dx

d  

Since V = 0,          0
8

2

2

2

2

 
E

h

m

dx

d
 

The above equation holds good for a particle for which the potential v=0 over the entire space 
(No boundaries at all). 

We know that in the case of particle in an infinite potential well, the condition V=0 holds good 
only over a infinite width ‘L’ and outside region, V= , 

Since for the free particle, V = 0 holds good everywhere, we can extend the case of particle in an 
infinite potential well to the free particle’s case, by treating the width of the well to be infinity, 

i.e., by allowing L = , 

We have the equation for energy Eigen values for a particle in an infinite potential well as,  

2

22

8mL

hn
E   

                                     Where, n = 1, 2, 3, . . . . . 

Rearranging the above equation, we have, 

Em
h

L
n 2

2
  

Here, we see that for a particle with constant energy E but confined in the well, n depends 

mainly on ‘L’. Hence as L→ , n→. If the particle is no more confined in any sort of well but 

free, at that time it also follows that n = , which essentially means that a free particle can have 
any energy i.e., the energy Eigen values or the possible values of energy are infinite in number. 
Keeping the energy level representation in the mind, we say that the permitted energy values are 
continues. All these mean, there is no discreteness in the allowed energy values. In other word, 
there is no quantization of energy in case of a free particle and the problem is dealt in classical 
mechanics. Thus a free particle is a classical entity. 

https://www.youtube.com/watch?v=tlM9vq-bepA 

https://www.youtube.com/watch?v=v9DPzMoWpc0 

https://www.youtube.com/watch?v=8l4x4vbMP0c 
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Notes 
Syllabus:       

Quantum Computing:          8 hrs 

Principles of Quantum Information & Quantum Computing: 

Introduction to Quantum Computing, Moore’s law & its end, Differences between Classical & 
Quantum computing. Concept of qubit and its properties. Representation of qubit by Bloch 
sphere. Single and Two qubits. Extension to N qubits. 

Dirac representation and matrix operations: 

Matrix representation of 0 and 1 States, Identity Operator I, Applying I to|0⟩and |1⟩ states, Pauli 
Matrices and its operations on |0⟩and |1⟩states, Explanation of i) Conjugate of a matrix and ii) 
Transpose of a matrix. Unitary matrix U, Examples: Row and Column Matrices and their 
multiplication (Inner Product), Probability, and Quantum Superposition, normalization rule. 
Orthogonality, Orthonormality. Numerical Problems. 

Quantum Gates: 

Single Qubit Gates: Quantum Not Gate, Pauli – X, Y and Z Gates, Hadamard Gate, Phase Gate 
(or S Gate), T Gate Multiple Qubit Gates: Controlled gate, CNOT Gate, (Discussion for 4 
different input states). Representation of Swap gate, Controlled -Z gate, Toffoli gate. 

Pre requisites: Matrices  

Self-learning: Moore’s law 



 

Introduction  

Quantum computing is a rapidly-emerging field focused on the development of computer 

technologies centered on the principles of Quantum Physics. Quantum Physics explains the nature 

and behaviour of energy and matter on the quantum (atomic and subatomic) scale.  Elementary 

particles such as protons, neutrons and electrons can exist in two or more states at a time. This 

fundamental behaviour is utilized in designing the quantum computation processing units and in 

fact it is more efficient than classical computation 

Quantum computing uses a combination of bits to perform specific computational tasks with 

greater efficiency than their classical counterparts. Even though quantum computers are not going 

to replace classical computers, quantum technology is significantly changing the way the world 

operates. The quantum computer gains much of its processing power through the ability for bits 

to be in multiple states simultaneously. They can perform tasks using a combination of 1’s, 0’s 

and both 1 and 0 at a time  

Brief History 

In 1981, Paul Benioff at Argonne National Labs came up with the idea of a computer that operates 

with quantum mechanical principles. In 1984, David Deutsch of Oxford University provided the 

critical idea behind quantum computing research and the possibility of designing a computer that 

is based exclusively on quantum rules. 

The Essential Elements of Quantum Theory 

 Energy values are discrete units.

 Elementary particles may behave like particles or waves.

 The movement of elementary particles is inherently random and, thus, unpredictable.

 The simultaneous measurement of two complementary values - such as the position and

momentum of a particle - is imperfect. The more precisely one value is measured, the more

flawed the measurement of the other value will be.

Moore’s law & its end

In 1965, Gordon E. Moore—co-founder of Intel—postulated that “the number of transistors that 

can be packed into a given unit of space will double about every eighteen months”. This is also 

known as Moore's Law 

Gordon Moore did not call his observation as "Moore's Law," nor did he set out to create a "law". 

Moore made this statement based on noticing emerging trends in chip manufacturing at the 

semiconductor industry. Eventually, Moore's insight became a prediction, which in turn became 

the golden rule known as Moore's Law. 
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https://www.techtarget.com/whatis/definition/quantum
https://www.techtarget.com/whatis/definition/bit-binary-digit
https://whatis.techtarget.com/definition/classical-computing


Moore's Law implies that computers, machines that run on computers, and computing power all 

become smaller, faster, and cheaper with time, as transistors on integrated circuits become more 

efficient. 

Here is a graphic representation for microprocessors  

Impact of Moore’s Law on Computing

Moore’s Law has had a direct impact on the progress of computing power. What this means 

specifically, is that transistors in integrated circuits have become faster. Transistors conduct 

electricity, which contain carbon and silicon molecules that can make the electricity run faster 

across the circuit. The faster the integrated circuit conducts electricity, the faster the computer 

operates. 

Is Moore’s Law Coming to an End?

The electronic industry for computers grows hand-in-hand with the decrease in size of the 

integrated circuits. This miniaturization is necessary to increase computational power, that is, the 

number of floating-point operations per second (FLOPS) a computer can perform. In 1950’s, 

electronic computers were capable of performing approximately 103 FLOPS while present 

supercomputers have a power greater than 1013 FLOPS. According to Moore’s law, the number 

of transistors that may be placed on a single integrated circuit chip doubles approximately every 

18 – 24 months. The present limit is approximately 108 transistors per chip and the typical size 

of circuit components is of the order of 100 nano meters. That means, we have reached the atomic 

size for storing a single bit of information and quantum effects have become unavoidably 

dominant. 

Taking all these factors into consideration, it is necessary to look for alternative ways of computing 

outside of the electrons and silicon transistors. One such alternative is quantum computing.  

Quantum computers are based on quantum bits (qubits) and use quantum effects like superposition 

and entanglement to their benefit, hence overcoming the miniaturization problems of classical 

computing. 

2



Comparison of Classical and Quantum Computing 

Classical computing relies on principles of Boolean algebra. Data must be processed in an 

exclusive binary state at any point in time; either 0 (off / false) or 1 (on / true). The millions of 

transistors and capacitors at the heart of computers can only be in one state at any point. In 

addition, there is still a limit as to how quickly these devices can be made to switch states. As we 

progress to smaller and faster circuits, we begin to reach the physical limits of materials and the 

limitations for classical laws of physics to apply 

The quantum computer operates with a two-mode logic gate. In a quantum computer, a number 

of elemental particles such as electrons or photons can be used. Each particle is given a charge or 

polarization, acting as a representation of 0 and/or 1. Each particle is called a quantum bit, or 

qubit. The nature and behaviour of these particles form the basis of quantum computing. The two 

most relevant aspects of quantum physics are the principles of superposition and entanglement. 

Differences between classical and quantum computing 

Comparison key Classical computer Quantum computer 

Basis of computing 
Large scale multipurpose computer 

based on classical physics 

High speed computer based on 

quantum mechanics 

Information 

storage 

Bit-based information storage using 

voltage/charge 

Quantum bit-based information 

storage using electron spin or 

polarization 

Bit values 
Bits having a value of either 0 or 1 can 

have a single value at any instant 

Qubits have a value of 0, 1 or 

sometimes linear combination of 

both, (a property known as 

superposition)  

Number of 

possible states 

The number of possible states is 2 which 

is either 0 or 1 

The number of possible states is 

infinite since it can hold 

combinations of 0 or 1 along with 

some complex information 

Output 

Deterministic (repetition of 

computation on the same input gives the 

same output) 

Probabilistic (repetition of 

computation on superposed states 

gives probabilistic answer) 

Gates used for 

processing 
Logic gates (AND, OR, NOT, etc.) 

Quantum gates (X, Y, Z, H, CNOT 

etc.) 

Operations Operations use Boolean Algebra 

Operations use linear algebra and 

are represented with unitary 

matrices 

Circuit 

implementation 

Circuit implemented in macroscopic 

technologies (e.g. CMOS) that are fast 

and scalable 

Circuits implemented in 

microscopic technologies (e.g. 

nuclear magnetic resonance) that 

are slow and delicate 

https://www.techtarget.com/whatis/definition/Boolean
https://www.techtarget.com/whatis/definition/binary


Concept of qubit and its properties 
 

From bits to qubit 

 

  Bit: A digital computer stores and processes information using bits, which can be either 0 or 1. 
Physically, a bit can be anything that has two distinct configurations: one represented by “0”, 
and the other represented by “1”. It could be a light bulb that is on or off, a coin that is heads or 
tails, or any other system with two distinct and distinguishable possibilities. In modern 
computing and communications, bits are represented by the absence or presence of an electrical 
signal, encoding “0” and “1” respectively 

 

Qubit is the physical carrier of quantum information. It is the quantum version of a bit, and its 

quantum state can be written in terms of two levels, labelled |0⟩ and |1⟩. | ⟩ this notation is known 

as ‘ket’ notation and  | is known as ‘brac’ notation. Both are together called as Dirac notations 

‘Ket’ is analogous to a column vector.  

They are also called basis vectors and represented by two-dimensional column vectors as follows 

 

|0⟩ = [
1
0
]         |1⟩ = [

0
1
] 

 

The qubit can be in any one of the two states as well as in the superposed state simultaneously  

 

In quantum computation two distinguishable states of a system are needed to represent a bit of 

data. For example, two states of an electron orbiting a single atom is shown in the following 

figure. Spin up is taken as |1⟩ and spin down is taken as |0⟩. Similarly ground state energy level 

is |0⟩ and excited state level is |1⟩ 
 

 

 

 

 

 

 
Qubit represented by two electronic levels in an atom 

 

This is the abstract notion of a qubit. The quantum computers actually use a physical type of qubit 

called a superconducting qubit  is made from superconducting materials (of course, there are other 

approaches also to build the qubits) 

 

NOTE:  

In quantum computing the vectors are members of complex vector space. Each member of this space is 
represented as column vector of n dimensions with single 1 at the location corresponding to a particular 
basis vector. 
 It is as follows 

|0⟩ =

[
 
 
 
 
1
0
0.
.
0]
 
 
 
 

  |1⟩ =

[
 
 
 
 
0
1
0.
.
0]
 
 
 
 

   |2⟩ =

[
 
 
 
 
0
0
1.
.
0]
 
 
 
 

 …….  |𝑁 − 1⟩ =

[
 
 
 
 
0
0
0.
.
1]
 
 
 
 

 

                                                           
 Complex vector space is a vector space which contains complex numbers   

|0⟩ |1⟩ 

Excited level 

 

 

Ground level 
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Here we use only two dimensions (or only two sets). Hence we write as 

|0⟩ = [
1
0
]  |1⟩ = [

0
1
] 

Superposition of two states 

The difference between qubits and classical bits is that a qubit can be in a linear combination 

(superposition) of the two states |0⟩ and |1⟩. For ex, if  and  are the probability amplitudes of 

electron in ground state (ie, in |0⟩ state) and in excited state (ie, in |1⟩ state) then the linear 

combination of two states is 

|ψ⟩ = α |0⟩ + β|1⟩ 
The numbers α and β are complex but due to normalization conditions 

|∝|2 + |𝛽|2 = 1.

Here |∝|2is the probability of finding |𝜓⟩ in state |0⟩ and |𝛽|2is the probability of finding |𝜓⟩ in
state |1⟩. So, we have to keep in mind that when a qubit is measured, it only gives either ‘0’ or 

‘1’ as the measurement result – probabilistically 

Consider the following example of qubit representation 

|Ψ⟩ =
1

√2
|0⟩ +

1

√2
|1⟩ 

∴∝=
1

√2
 𝑎𝑛𝑑   𝛽 =  

1

√2

|∝|2 = |𝛽|2 =
1

2

This means that with 50% probability the qubit will be found in |0⟩ state as well as in |1⟩ state.   

The superposed states are also called as space states where as |0⟩ and |1⟩ are called basis states. 

Properties of qubits 

1. Qubits make use of discrete energy state particles such as electrons and photons

2. Qubits exists in two quantum state |0⟩ and |1⟩ or in a linear combination of both states. This

is known as superposition. This property allows for exponentially many logical states at once

(and no classical computer can achieve it)

3. Unlike classical bits, qubit can work with the overlap of both 0 & 1 states. For ex, a 4-bit

register1 can store one number from 0 to 15 (because of 2n = 24=16), but 4-qubit register can

store all 16 numbers

4. When the qubit is measured, it collapses to one of the two basis states |0⟩ or |1⟩
5. Quantum entanglement and quantum tunnelling are two exclusive properties of qubit

6. State of the qubits is represented using Bloch sphere

1 Register – is a group of flip-flops. Its basic function is to hold information within a digital system so as to make 
it available to the logic units during the computing process. However, a register may also have additional 
capabilities associated with it. 
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After studying the physics of qubits it is now time to look at the mathematics of qubits. Let us 

start with the representation of qubit using Bloch sphere in a vector space. Later on we proceed 

towards single qubit, multi qubit, tensor operation, operators and matrix representation 

NOTE: Vector space is a set of elements (or vectors) which are added together or multiplied by real numbers. 

Addition of two vectors or multiplication of a vector by a scalar is satisfied here. It should not be confused with 

vector field 

Bloch sphere 

Bloch sphere is an imaginary sphere which is used to represent pure single-qubit states as a point 

on its surface. It has unit radius. Its North Pole and South Pole are selected to represent the basis 

states namely |0⟩ and |1⟩. North Pole represents |0⟩ (say spin up) and South Pole represents |1⟩ 

(say spin down ). All other points on the sphere represent superposed states (ie, state space). 

Bloch sphere allows the state of a qubit to be represented in spherical coordinates (ie, r,  and ). 
It is as follows 

The state qubit |ψ⟩ on the Bloch sphere makes an angle  with z-axis and its projection (azimuth) 

makes angle  with x-axis as shown. It is clear from the fig that 0 <  <  and 0 <  < 2. |ψ⟩ is 

represented as 

|ψ⟩ = α |0⟩ + β|1⟩ 
It can be proved that 

|Ψ⟩ = 𝑐𝑜𝑠
𝜃

2
|0⟩ + 𝑒𝑖𝜙𝑠𝑖𝑛

𝜃

2
|1⟩ − − − (1) 

Using this equation we can represent |ψ⟩ for different  and  as follows 

Case-1: let  = 0 and   = 0, then eq (1) becomes 

|Ψ⟩ = 𝑐𝑜𝑠 0|0⟩ + 𝑒𝑖0𝑠𝑖𝑛0|1⟩ = |0⟩ + 0

∴ |Ψ⟩ = |0⟩ 

Case-2: let  =  and   = 0, then eq (1) becomes 

|Ψ⟩ = 𝑐𝑜𝑠 
𝜋

2
|0⟩ + 𝑒𝑖0𝑠𝑖𝑛

𝜋

2
|1⟩ = 0 + |1⟩ 
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∴ |Ψ⟩ = |1⟩ 

Case-3: let  = /2 and   = 0, then eq (1) becomes 

|Ψ⟩ = 𝑐𝑜𝑠 
𝜋

4
|0⟩ + 𝑒𝑖0𝑠𝑖𝑛

𝜋

4
|1⟩ 

|Ψ⟩ =
1

√2
|0⟩ +

1

√2
|1⟩ 

|Ψ⟩ =
|0⟩ + |1⟩

√2

Case-4: let  = /2 and   = , then eq (1) becomes 

|Ψ⟩ = 𝑐𝑜𝑠 
𝜋

4
|0⟩ + 𝑒𝑖𝜋𝑠𝑖𝑛

𝜋

4
|1⟩ 

|Ψ⟩ =
1

√2
|0⟩ −

1

√2
|1⟩ 

|Ψ⟩ =
|0⟩ − |1⟩

√2

In the above discussion we have represented only single qubit state. Bloch sphere is a nice visualization 

of single qubit states.  

Multiple Qubits 

Single qubits are interesting, but individually they offer no computational advantage. We will now 

look at how to represent multiple qubits, and how these qubits can interact with each other. 

Two qubits 

Consider two qubits. They can be in any one of four possible states represented as |00⟩, |01⟩, |10⟩ and 

|11⟩. The interaction among these qubits is described by creating a new vector space2 using a special 

kind of operation called tensor product or Kronecker product. It is as follows 

Let U and V are two 2-d vectors given as 

𝑈 = [
𝑥1

𝑦1
] , 𝑉 = [

𝑥2

𝑦2
]

Their tensor product is 

𝑈 ⊗ 𝑉 = [
𝑥1 [

𝑥2

𝑦2
]

𝑦1 [
𝑥2

𝑦2
]
] 

2 Vector space is a set of elements (or vectors) which are added together or multiplied by real numbers or scalars. 
Addition of two vectors or multiplication of a vector by a scalar is satisfied here. It should not be confused with vector 
field 
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𝑈 ⊗ 𝑉 = [

𝑥1𝑥2

𝑥1𝑦2
𝑦1𝑥2

𝑦1𝑦2

] 

Based on this we can write |00⟩ as follows 

|0⟩ ⊗ |0⟩ = [
1 [

1
0
]

0 [
1
0
]
] = [

1
0
0
0

] 

Sometimes we avoid the symbol  and write directly as 

|00⟩ = [

1
0
0
0

] 

Similarly 

|01⟩ = [

0
1
0
0

]   |10⟩ = [

0
0
1
0

]  and |11⟩ = [

0
0
0
1

] 

The state qubit is (ie, linear combination of these four) 

|⟩ = 00|00⟩ + 01|01⟩ + 10|10⟩ + 11|11⟩ 

For 2 qubit system we have 4 complex amplitudes namely 00, 01, 10 and 11. According to 

normalization condition 

|𝛼00|
2 + |𝛼01|

2 + |𝛼10|
2 + |𝛼11|

2 = 1

Similarly if there are 3 qubits there will be 8 complex amplitudes and in general for n qubits we will 

have 2n complex amplitudes. This means that a basis state is represented by a number 0 to 2n-1. The 

superposition state is represented as 

|⟩ = ∑ ∝𝒙

𝟐𝒏−𝟏

𝒙=𝟎

|x⟩ 

Qubit has two quantum states similar to the classical binary states. The qubit can be in any one of the 

two states as well as in the superposed state simultaneously.  

Dirac representation and Matrix operations 

Matrix representation of 0 and 1 states 

In Quantum mechanics, Brac-Ket notation is a standard notation for describing quantum states. The 

notation | ⟩  is known as ‘ket’ notation and  | is known as ‘brac’ notation. Both are together called as 

Dirac notations.  
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The ‘ket’ vector typically represented as a column vector and ‘brac’ vector typically represented as a 

row vector as follows 

|0⟩ = [
1
0
]  |1⟩ = [

0
1
] − − − − − −ket notations 

⟨0| = [1 0]       ⟨1| = [0 1] − − − − − brac notations 

Hence, any arbitrary state can be represented as 

|ψ > =  [
𝛼
𝛽]     𝑜𝑟   |ψ⟩   =  α |0⟩  + β |1⟩

Some of the properties of these notations are 

i. Addition of two kets gives another ket (commutative)

|Α⟩ + |𝐵⟩ = |𝐶⟩ = |𝐵⟩ + |𝐴⟩ 

ii. Addition of kets obeys associative property

|Α⟩ + (|𝐵⟩ + |𝐶⟩) = (|𝐴⟩ + |𝐵⟩) + |𝐶⟩ 

iii. If c1 and c2 are scalars or a complex numbers and |A ⟩ is a ket then

(𝑐1 + 𝑐2)|𝐴⟩ = 𝑐1|𝐴⟩ + 𝑐2|𝐴⟩

iv. In a complex vector space for every ket there is unique brac. Brac is the Hermitian

conjugate of the ket.

If |𝐴⟩ = [
𝐴1

𝐴2
]  then ⟨𝐴| = [𝐴1

∗ 𝐴2
∗ ]

v. Bracs are useful in calculating probability amplitudes.

For ex, the probability amplitude of |1 is  which can be calculated as follows

⟨1||Ψ⟩ = ⟨1|α |0⟩  + ⟨1|β |1⟩ 

⟨1||Ψ⟩ = α⟨1| |0⟩  + β ⟨1||1⟩ 

⟨1||Ψ⟩ = α[0 1] [
1
0
] + 𝛽[0 1] [

0
1
] 

⟨1|Ψ⟩ = 𝛼 × 0 + 𝛽 × 1 

⟨1|Ψ⟩ = 𝛽 

Similarly 

⟨0|Ψ⟩ = 𝛼 

vi. If U| and V| are two bracs then

 Will be discussed later 

8



⟨𝑈| + ⟨𝑉| = ⟨𝑈 + 𝑉| 

Operators and matrices 

An operator is a mathematical rule that transform a given function into another function. 

Ex:  

i. √4 = 2.  Here  is a square root operator. It transforms 4 to 2 

ii. 𝐷 =
𝑑

𝑑𝑥
 is a differentiate operator. It transforms 2x3 to 6x2 

Similar to this we have the following example. In this case operator ‘A’ transforms the vector |𝑎⟩ 
to another vector |𝑏⟩ 

𝐴̂  |𝑎⟩  =  |𝑏⟩ 

There are different types of operators like Linear operator, Identity operator, Null operator, Inverse 

operator, Singular & non-singular operator etc. 

Identity operator ‘I’

The identity operator is an operator which, operating on a function, leaves the function unchanged 

i.e. 

𝐼 |𝑎⟩  =  |𝑎⟩ 
It is given in matrix form by 

𝐼 = [
1 0
0 1

] 

This is also called as identity matrix. There will be no change when I operates on either |0⟩ state 

or |1⟩ state. It is explained as follows  

𝐼 |0⟩ = [
1 0
0 1

] [
1
0
] = [

1
0
] 

∴ 𝐼 |0⟩  =  |0⟩ 
Similarly 

𝐼 |1⟩ = [
1 0
0 1

] [
0
1
] = [

0
1
] 

∴ 𝐼 |1⟩  =  |1⟩ 

Identity matrix acts as number 1. It is always a square matrix. 

Conjugate matrices 

If the elements in a matrix A are complex numbers, then the matrix obtained by the corresponding 

conjugate complex elements is called the conjugate of A and is denoted by 𝐴∗. For ex 
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If 𝐴 = [
0 𝑖
−𝑖 0

]  then     𝐴∗ = [
0 −𝑖
𝑖 0

] 

If 𝐴 = [
𝑖 2𝑖 + 1

−𝑖 1
]  then 𝐴∗ = [

−𝑖 −2𝑖 + 1
𝑖 1

] 

If 𝐴 = [
1 2𝑖

4𝑖 + 1 0
]  then 𝐴∗ = [

1 −2𝑖
−4𝑖 + 1 0

] 

If 𝐴 = [
1 𝑖
−𝑖 1

]  then 𝐴∗ = [
1 −𝑖
𝑖 1

] 

 

If columns and rows of a matrix A are interchanged then the resultant matrix is transpose of A and 

represented as AT. For ex, 

If 𝐴 = [
0 1
−𝑖 0

]  then 𝐴𝑇 = [
0 −𝑖
1 0

] 

If 𝐴 = [
1 0

−2 1
]  then 𝐴𝑇 = [

1 −2
0 1

] 

If 𝐴 = [
1 2𝑖

4𝑖 + 1 0
]  then 𝐴𝑇 = [

1 4𝑖 + 1
2𝑖 0

] 

Hermitian matrices 

The transpose of complex conjugate of a matrix is known as Hermitian operator (also called as adjoint 

operator) and the resultant matrix is known as Hermitian matrix. It is represented by 𝐴†

Let A be a matrix, A* be its complex conjugate and 𝐴∗𝑇
 is its transpose then its Hermitian matrix is

𝐴† = 𝐴∗𝑇

Ex: 

If 𝐴 = [
1 2𝑖

4𝑖 + 1 0
]  then 𝐴∗ = [

1 −2𝑖
−4𝑖 + 1 0

] 

𝐴† = [
1 −4𝑖 + 1

−2𝑖 0
] 

Unitary matrices 

Matrix A is said to be unitary if it produces an identity matrix I when multiplied by its conjugate 

transpose  

𝐴𝐴† = 𝐼

In other words, A is a unitary matrix if its conjugate transpose is equal to its reciprocal, ie 

𝐴† =
𝐼

𝐴
=

1

𝐴
= 𝐴−1

Transpose matrices
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we can show that 𝐴 =
1

2
[
1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖

]   is a unitary matrix 

Inner product 

Introduction 

Let 𝑈 = 𝑥1𝑖 + 𝑦1𝑗 + 𝑧1𝑘 and 𝑉 = 𝑥2𝑖 + 𝑦2𝑗 + 𝑧2𝑘 be the two vectors in real space then their dot 

product is 

𝑈. 𝑉 = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 

If U = V then 

𝑈.𝑈 = |𝑈|2 = 𝑥1
2 + 𝑥2

2 + 𝑥3
2

The length of the resultant vector is |𝑈| = √𝑈.𝑈 = √𝑥1
2 + 𝑦1

2 + 𝑧1
2

In matrix form U and V are written as 

𝑈 = [

𝑥1

𝑦1

𝑧1

]  and V = [

𝑥2

𝑦2

𝑧2

] 

And the dot product is written as 

𝑈. 𝑉 = [𝑥1𝑦1𝑧1] [

𝑥2

𝑦2

𝑧2

] = 𝑈𝑇𝑉

This dot product is also called as inner product. In real space inner product is same as dot product of 

two vectors and it finally gives a scalar quantity. 

In quantum computing the vectors are the members of complex space and the inner product gives a 

complex number 

Definition of inner product 

The inner product of two vectors U and V in the complex space is a function that takes U and V as 

inputs and produces a complex number as output 

In terms of Dirac notation, the inner product is given as 

⟨𝑈|𝑉⟩ = 𝑐 

Let |𝑈⟩ = [
𝑥1

𝑦1
] and|𝑉⟩ = [

𝑥2

𝑦2
] be the two vectors. Their inner product is written as ⟨𝑈|𝑉⟩

But ⟨𝑈| is equal to conjugate transpose of |𝑈⟩ 

𝑖𝑒, ⟨𝑈| = |𝑈∗⟩−1 = |𝑈⟩† = [𝑥1
∗ 𝑦1

∗]

∴ ⟨𝑈|𝑉⟩ = [𝑥1
∗ 𝑦1

∗] [
𝑥2

𝑦2
] = 𝑥1

∗𝑥2 + 𝑦1
∗𝑦2

11



The square root of the inner product of a vector with itself is also called as norm or the length of the 

vector. It is given by 

|𝑈| = √〈𝑈|𝑈〉 

𝐄𝐱: 𝐅𝐢𝐧𝐝 𝐭𝐡𝐞 𝐢𝐧𝐧𝐞𝐫 𝐩𝐫𝐨𝐝𝐮𝐜𝐭 𝐨𝐟|𝑼⟩ = [
𝟑 + 𝒊
𝟒 − 𝒊

]  𝐚𝐧𝐝 |𝑽⟩ = [
𝟑𝒊
𝟒

] 

First we shall find the conjugate transpose of |𝑈⟩ 

|𝑈∗⟩ = [
3 − 𝑖
4 + 𝑖

] 

|𝑈⟩† = [3 − 𝑖 4 + 𝑖]

∴ ⟨𝑈| = |𝑈⟩† = [3 − 𝑖 4 + 𝑖]

⟨𝑈|𝑉⟩ = [3 − 𝑖 4 + 𝑖] [
3𝑖
4

] 

⟨𝑈|𝑉⟩ = (3 − 𝑖) × 3𝑖 + (4 + 𝑖) × 4 

⟨𝑈|𝑉⟩ = 9𝑖 + 3 + 16 + 4𝑖 

⟨𝑈|𝑉⟩ = 13𝑖 + 19 

𝐄𝐱: 𝐅𝐢𝐧𝐝 𝐭𝐡𝐞 𝐢𝐧𝐧𝐞𝐫 𝐩𝐫𝐨𝐝𝐮𝐜𝐭 𝐨𝐟 |𝑨⟩ = [
𝒂
𝒊𝒃

]𝒘𝒊𝒕𝒉 𝒊𝒕𝒔𝒆𝒍𝒇 

First we shall find the conjugate transpose of |A 

|𝐴∗⟩ = [
𝑎

−𝑖𝑏
]

|𝑈⟩† = [𝑎 −𝑖𝑏]

∴ ⟨𝐴| = [𝑎 −𝑖𝑏] 

⟨𝐴|𝐴⟩ = [𝑎 −𝑖𝑏] [
𝑎
𝑖𝑏

] 

⟨𝐴|𝐴⟩ = 𝑎2 + (−𝑖𝑏)(𝑖𝑏)

⟨𝐴|𝐴⟩ = 𝑎2 + 𝑏2

𝐄𝐱: 𝐟𝐢𝐧𝐝 𝐭𝐡𝐞 𝐧𝐨𝐫𝐦 𝐨𝐟 |𝑼⟩ = [
𝟏 − 𝒊

𝟐
] 

|𝑈| = √〈𝑈|𝑈〉 

|𝑈| = √[1 + 𝑖 2] [
1 − 𝑖

2
] 

|𝑈| = √(1 + 𝑖)(1 − 𝑖) + 2 × 2 = √1 + 1 + 4 = √6 

Orthogonality 

If the inner product of two vectors is equal to 0 then they are said to be orthogonal (or perpendicular) 

to each other 
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If ⟨𝑈|𝑉⟩ = 0 then |𝑈⟩ and |𝑉⟩ are perpendicular. 

Consider, 

|0⟩ = [
1
0
]  |1⟩ = [

0
1
] 

Then 

⟨0|1⟩ = [1 0] [
0
1
] = 0 

Hence |0⟩ is perpendicular to |1⟩ 

The most important property of the inner product of a vector with itself is equal to one 

ie, ⟨𝜓|𝜓⟩ = 1 

This is known as normalization condition. The physical significance of normalization is that the 

"probability amplitude" of the quantum system is1  

Orthonormality 

If each element of a set of vectors is normalized and the elements are orthogonal with respect to each 

other, we say the set is orthonormal (ortho + normalization = orthonormalization) 

Consider the set 

|0⟩ = [
1
0
]  |1⟩ = [

0
1
] 

⟨0|0⟩ = [1 0] [
1
0
] = 1 + 0 = 1  normalized 

⟨0|1⟩ = [1 0] [
0
1
] = 0 + 0 = 0  orthogonal 

⟨1|1⟩ = [0 1] [
0
1
] = 0 + 1 = 1  normalized 

⟨1|0⟩ = [0 1] [
1
0
] = 0 + 0 = 0  orthogonal 

Hence set of |0 and |1 is orthonormal 

Pauli Matrices 

These are the 2 × 2 complex matrices introduced by Pauli in order to account for the interaction of 

the spin with an external electromagnetic field. They are given by 

𝜎1 = 𝜎𝑗  = 𝑋 =  [
0 1
1 0

] 

𝜎2 = 𝜎𝑘 = 𝑌 = [
0 −𝑖
𝑖 0

] 

𝜎3 = 𝜎𝑙 = 𝑍 =  [
1 0
0 −1

] 

NOTE: X, Y and Z are also called as X – gate, Y- gate and Z- gate 
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Properties of Pauli matrices 

The most important property of Pauli matrices is that square of all the three matrices gives an 

identity matrix I. For ex, 

𝜎1
2 = [

0 1
1 0

] [
0 1
1 0

] = [
1 0
0 1

] 

∴ 𝜎1
2 = 𝐼

In general 

𝜎𝜎† = 1

𝜎† =
1

𝜎
= 𝜎−1

So, they are unitary 

Another property of Pauli matrices is that they are Hermitian. Let A be a matrix, A* be its complex 

conjugate and 𝐴† 3 is its transpose. If A = 𝐴†then the matrix is Hermitian. For ex,

𝜎2 = [
0 −𝑖
𝑖 0

] 

𝜎2
∗ = [

0 𝑖
−𝑖 0

] 

𝜎2
† = [

0 −𝑖
𝑖 0

] 

∴ 𝜎2
† = 𝜎2

Operation of Pauli Matrices on 0 and 1 states 

Three Pauli matrices X, Y and Z act on basis states |0 and |1 as follows 

i. X operating on |0 and |1

𝑋|0⟩ =  [
0 1
1 0

] [
1
0
] = [

0
1
] = |1⟩ 

𝑋|1⟩ =  [
0 1
1 0

] [
0
1
] = [

1
0
] = |0⟩ 

Since X inverts each input (ie, |0 becomes |1 and |1 becomes|0) it is also called as bit-flip gate 

If a superposed qubit goes through X gate, the result will be 

𝑋|Ψ⟩ = [
0 1
1 0

] [
𝛼
𝛽] = [

𝛽
𝛼
] = 𝛼|1⟩ + 𝛽|0⟩ 

So, 

𝑋|Ψ⟩ = 𝛼|1⟩ + 𝛽|0⟩ 

3 Transpose means convert rows into column and columns into row 
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ii. Y operating on |0 and |1

𝑌|0⟩ = [
0 −𝑖
𝑖 0

] [
1
0
] = [

0 × 1 + (−𝑖) × 0
𝑖 × 1 + 0 × 0

] = [
0 + 0
𝑖 + 0

] = [
0
𝑖
] = 𝑖 [

0
1
] = 𝑖|1⟩ 

𝑌|1⟩ = [
0 −𝑖
𝑖 0

] [
0
1
] = [

0 × 0 + (−𝑖) × 1
𝑖 × 0 + 0 × 1

] = [
0 − 𝑖
0 + 0

] = [
−𝑖
0

] = −𝑖 [
1
0
] = −𝑖|0⟩ 

So, 

𝑌|0⟩ = 𝑖|1⟩ 
Similarly 

𝑌|1⟩ = −𝑖|0⟩ 

If a superposed qubit goes through Y gate, the result will be 

𝑌|Ψ⟩ = [
0 −𝑖
𝑖 0

] [
𝛼
𝛽] = [

0 × 𝛼 + (−𝑖) × 𝛽
𝑖 × 𝛼 + 0 × 𝛽

] = [
−𝑖𝛽
𝑖𝛼

] = −𝑖𝛽|0⟩ + 𝑖𝛼|1⟩ 

So, 

𝑌|Ψ⟩ = 𝑖𝛼|1⟩−𝑖𝛽|0⟩ 

iii. Z operating on |0 and |1

𝑍|0⟩ = [
1 0
0 −1

] [
1
0
] = [

1 × 1 + 0 × 0
0 × 1 + (−1) × 0

] = [
1 + 0
0 + 0

] = [
1
0
] = |0⟩ 

𝑍|1⟩ = [
1 0
0 −1

] [
0
1
] = [

1 × 0 + 0 × 1
0 × 0 + (−1) × 1

] = [
0 + 0
0 − 0

] = [
0

−1
] = − [

0
11

]= −|1⟩ 

So, 

𝑍|0⟩ = |0⟩ 

𝑍|1⟩ = −|1⟩ 

If a superposed qubit goes through Z gate, the result will be 

𝑍|Ψ⟩ = [
1 0
0 −1

] [
𝛼
𝛽] = [

1 × 𝛼 + 0 × 𝛽
0 × 𝛼 + (−1) × 𝛽

] = [
𝛼

−𝛽] = 𝛼|0⟩ − 𝛽|1⟩

So, 

𝑍|Ψ⟩ = 𝛼|0⟩ − 𝛽|1⟩ 

This is also called phase-flip gate 

The truth tables for X, Y and Z gates are as follows 

X- gate Y-gate Z-gate 

Input Output Input Output Input Output 

|0⟩ |1⟩ |0⟩ 𝑖|1⟩ |0⟩ |0⟩ 

|1⟩ |0⟩ |1⟩ −𝑖|0⟩ |1⟩ −|1⟩ 

𝛼|0⟩ + 𝛽|1⟩ 𝛼|1⟩ + 𝛽|0⟩ 𝛼|0⟩ + 𝛽|1⟩ 𝑖𝛼|1⟩−𝑖𝛽|0⟩ 𝛼|0⟩ + 𝛽|1⟩ 𝛼|0⟩ − 𝛽|1⟩ 
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Symbolically these gates are represented as follows 

Limitation of Pauli matrices or Pauli gates 

Using only the Pauli-gates it is impossible to move our initialized qubit to any state other than |0⟩ or |1⟩, 
i.e. we cannot achieve superposition. This means we can see no behaviour different to that of a classical 

bit. To create more interesting states we need more gates 

Quantum Gates 

In classical computers gates are a small set of circuit elements that are used to implement the 

combination of binary variables 0’s and 1’s. Most commonly known gates are AND gate, OR gate and 

NOT gate.  

A quantum gate, a counterpart of classical gate, is a very simple computing device that performs 

quantum operation on qubits. Quantum gates are one of the essential parts of a quantum computer and 

are the building blocks of all quantum algorithms.  

Quantum gates are mathematically represented as transformation matrices that are unitary and the 

operations performed by these gates are reversible. Each unitary transformation U has inverse 

transformation 𝑈† so that

𝑈𝑈† = 𝐼

𝑈† =
𝐼

𝑈
=

1

𝑈
= 𝑈−1

Now, the basic question is that why quantum gates shall be unitary in nature? It can be explained as 

follows 

A fundamental property of qubits is that they are restricted by the normalization condition, i.e. sum of 

amplitudes square is equal 1. 

𝑖𝑒, |∝|2 + |𝛽|2 = 1
Quantum gates operate on set of qubits and transform them to another quantum state. These operations 

must preserve the normalization throughout the whole process. The only possible operation for this 

purpose is unitary matrices. Hence the quantum gates are inevitably unitary  

Another important feature of quantum gate is that they are always reversible. The outputs can be 

calculated from inputs and inputs can be retrieved from outputs. This is because all unitary matrices 

are reversible as explained earlier  

Note: 
1. If the product of a number and its reciprocal is equal to 1, then the number is reversible. For ex

2 ×
1

2
= 1 

𝛼|0⟩ + 𝛽|1⟩ 𝛼|1⟩ + 𝛽|0⟩ 

𝛼|0⟩ + 𝛽|1⟩ 𝑖𝛼|1⟩−𝑖𝛽|0⟩ Y 
𝛼|0⟩ + 𝛽|1⟩ 𝛼|0⟩ − 𝛽|1⟩ Z 

X 
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There are different types of quantum gates. Single-qubit gates can flip a qubit from 0 to 1 as well as 

allowing superposition states to be created. Two-qubit gates allow the qubits to interact with each other 

and can be used to create quantum entanglement (a strange phenomenon that can’t be explained by 

classical physics). 

Some of the important single qubit gates are discussed here. They all are represented by 2 × 2 matrix. 

(Note that X, Y and Z gates are already discussed earlier under the heading Pauli’s matrices. So, it is a 

sort of repetition)  

Single qubit gates 

1. X – Gate

This is also called as Pauli X – gate. It is given by 

𝑋 = [
0 1
1 0

] 

When X operates on |0 and |1 the output will be inverted (ie, |0 becomes |1 and |1 becomes|0) 

𝑋|0⟩ =  [
0 1
1 0

] [
1
0
] = [

0
1
] = |1⟩ 

𝑋|1⟩ =  [
0 1
1 0

] [
0
1
] = [

1
0
] = |0⟩ 

Since X inverts each input it is also called as bit-flip gate. If a superposed qubit goes through X gate, 

the result will be 

𝑋|Ψ⟩ = [
0 1
1 0

] [
𝛼
𝛽] = [

𝛽
𝛼
] = 𝛼|1⟩ + 𝛽|0⟩ 

So, 

𝑋|Ψ⟩ = 𝛼|1⟩ + 𝛽|0⟩ 

Symbolically these gates are represented as follows 

2. Y – Gate

This is also called as Pauli Y – gate. It is given by 

𝑌 =  [
0 −𝑖
𝑖 0

] 

When Y operates on |0 and |1 

𝛼|0⟩ + 𝛽|1⟩ 𝛼|1⟩ + 𝛽|0⟩ X 
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𝑌|0⟩ = [
0 −𝑖
𝑖 0

] [
1
0
] = [

0 × 1 + (−𝑖) × 0
𝑖 × 1 + 0 × 0

] = [
0
𝑖
] = 𝑖 [

0
1
] = 𝑖|1⟩ 

𝑌|1⟩ = [
0 −𝑖
𝑖 0

] [
0
1
] = [

0 × 0 + (−𝑖) × 1
𝑖 × 0 + 0 × 1

] = [
−𝑖
0

] = −𝑖 [
1
0
] = −𝑖|0⟩ 

So, 

𝑌|0⟩ = 𝑖|1⟩ and 𝑌|1⟩ = −𝑖|0⟩ 

If a superposed qubit goes through Y gate, the result will be 

𝑌|Ψ⟩ = [
0 −𝑖
𝑖 0

] [
𝛼
𝛽] = [

0 × 𝛼 + (−𝑖) × 𝛽
𝑖 × 𝛼 + 0 × 𝛽

] = [
−𝑖𝛽
𝑖𝛼

] = −𝑖𝛽|0⟩ + 𝑖𝛼|1⟩ 

So, 

𝑌|Ψ⟩ = 𝑖𝛼|1⟩−𝑖𝛽|0⟩ 

Symbolically these gates are represented as follows 

3. Z – Gate

This is also called as Pauli Z – gate. It is given by 

𝑍 =  [
1 0
0 −1

] 

When Z operates on |0 and |1 the phase will change. Hence this is also called as phase-flip gate 

𝑍|0⟩ = [
1 0
0 −1

] [
1
0
] = [

1 × 1 + 0 × 0
0 × 1 + (−1) × 0

] = [
1
0
] = |0⟩ 

𝑍|1⟩ = [
1 0
0 −1

] [
0
1
] = [

1 × 0 + 0 × 1
0 × 0 + (−1) × 1

] = [
0

−1
] = − [

0
1
]= −|1⟩ 

So, 

𝑍|0⟩ = |0⟩ and  𝑍|1⟩ = −|1⟩ 

If a superposed qubit goes through Z gate, the result will be 

𝑍|Ψ⟩ = [
1 0
0 −1

] [
𝛼
𝛽] = [

1 × 𝛼 + 0 × 𝛽
0 × 𝛼 + (−1) × 𝛽

] = [
𝛼

−𝛽] = 𝛼|0⟩ − 𝛽|1⟩

So, 

𝑍|Ψ⟩ = 𝛼|0⟩ − 𝛽|1⟩ 

Symbolically these gates are represented as follows 

𝛼|0⟩ + 𝛽|1⟩ 𝑖𝛼|1⟩−𝑖𝛽|0⟩ Y 

𝛼|0⟩ + 𝛽|1⟩ 𝛼|0⟩ − 𝛽|1⟩ Z 
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The truth tables for X, Y and Z gates are as follows 

X - gate Y - gate Z - gate

Input Output Input Output Input Output 

|0⟩ |1⟩ |0⟩ 𝑖|1⟩ |0⟩ |0⟩ 

|1⟩ |0⟩ |1⟩ −𝑖|0⟩ |1⟩ −|1⟩ 

𝛼|0⟩ + 𝛽|1⟩ 𝛼|1⟩ + 𝛽|0⟩ 𝛼|0⟩ + 𝛽|1⟩ 𝑖𝛼|1⟩−𝑖𝛽|0⟩ 𝛼|0⟩ + 𝛽|1⟩ 𝛼|0⟩ − 𝛽|1⟩ 

4. Hadamard Gate – The gate to superposition

The Hadamard Gate is a well-known gate that brings a qubit into a superposition state. Similar to the 

Pauli-X gate, the Hadamard Gate acts on a single qubit, and can be represented by a 2 x 2 matrix as 

follows 

Hadamard gate brings a qubit in superposition 

𝐻 =
1

√2
 (

1 1
1 −1

) 

Let us find out what happens when Hadamard gate operates on a qubit that is in the |0⟩ state. 

𝐻|0⟩ =
1

√2
 (

1 1
1 −1

) [
1
0
] =

1

√2
[

1 × 1 + 1 × 0
1 × 1 + −1 × 0

] =  
1

√2
 [
1
1
] 

𝐻|0⟩ =
1

√2
 [
1
1
] =

1

√2
(|0⟩ + |1⟩) =

|0⟩ + |1⟩

√2

𝐻|0⟩ =
|0⟩ + |1⟩

√2
 − − − (1) 

Let us find out what happens when Hadamard gate operates on a qubit that is in the |1⟩ state. 

𝐻|1⟩ =
1

√2
 (

1 1
1 −1

) [
0
1
] =

1

√2
[

1 × 0 + 1 × 1
1 × 0 + −1 × 1

] =  
1

√2
 [

1
−1

] 

𝐻|1⟩ =
1

√2
 [

1
−1

] =
1

√2
(|0⟩ − |1⟩) =

|0⟩ − |1⟩

√2

𝐻|1⟩ =
|0⟩ − |1⟩

√2
− − − (2) 

If a superposed qubit goes through H gate, the result will be 

𝐻|𝜓⟩ =
1

√2
 (

1 1
1 −1

) [
𝛼
𝛽] =

1

√2
[

1 × 𝛼 + 1 × 𝛽
1 × 𝛼 + −1 × 𝛽

] =  
1

√2
 [
𝛼 + 𝛽
𝛼 − 𝛽

] 
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𝐻|𝜓⟩ =
𝛼 + 𝛽

√2
|0⟩ +

𝛼 − 𝛽

√2
|1⟩ 

𝐻|𝜓⟩ = 𝛼
|0⟩ + |1⟩

√2
+ 𝛽

|0⟩ − |1⟩

√2
− − − (3) 

The above equations shows that, after applying the Hadamard gate to a qubit that are in |0⟩ & |1⟩ states 

enter a new superposed states. This is the major difference between X, Y, Z and H gates. In X, Y and Z 

gates we get only single state whereas in H gate we get superposed state. 

The probability of measuring 0 and 1 is 

(
1

√2
)

2

+ (
1

√2
)
2

= 
1

2

The truth table is as follows 

INPUT OUTPUT 

|0⟩ 
|0⟩ + |1⟩

√2

|1⟩ 
|0⟩ − |1⟩

√2

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ 𝛼
|0⟩ + |1⟩

√2
+ 𝛽

|0⟩ − |1⟩

√2

The circuit symbol is as follows 

 

5. Phase Gate (S Gate)

The Phase gate or S gate is a gate that transfers |0⟩ into |0⟩ and |1⟩ into 𝑖|1⟩. It is represented as 

𝑆 = [
1 0
0 𝑖

] 

If we apply S gate to a state |0⟩ it will remain same 

𝑆|0⟩ = [
1 0
0 𝑖

] [
1
0
] =  [

1(1) + 0(0)

0(1) + 𝑖(0)
] =  [

1
0
] 

𝑆|0⟩ = |0⟩ 

If we apply S gate to a state |1⟩ it will be transformed into  𝑖|1⟩ 

𝑆|1⟩ = [
1 0
0 𝑖

] [
0
1
] =  [

1(0) + 0(1)

0(0) + 𝑖(1)
] =  [

0
𝑖
] = 𝑖 [

0
1
] 

𝛼
|0⟩ + |1⟩

√2
+ 𝛽

|0⟩ − |1⟩

√2
𝛼|0⟩ + 𝛽|1⟩ H 
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𝑆|1⟩ = 𝑖|1⟩ 

It transforms the state 𝛼|0⟩ + 𝛽|1⟩to the state 𝛼|0⟩ + 𝑖𝛽|1⟩ 

𝑆|𝜓⟩ = [
1 0
0 𝑖

] [
𝛼
𝛽] =  [

𝛼
𝑖𝛽]

The truth table is as follows 

Input Output 

|0⟩ |0⟩ 

|1⟩ 𝑖|1⟩ 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ 𝛼|0⟩ + 𝑖𝛽|1⟩ 

The symbol is as follows 

6. T- Gate

The T-gate is a very commonly used gate and it is given by 

𝑇 =  [
1 0

0 𝑒
𝑖𝜋

4

] 

If the input is |0⟩ then the output is also |0⟩ 

𝑇|0⟩ = [
1 0

0 𝑒
𝑖𝜋

4

] [
1
0
] =  [

1
0
] 

𝑇|0⟩ = |0⟩ 

If the input is |1⟩ then the output state is 𝑒
𝑖𝜋

4 |1⟩ 

𝑇|1⟩ = [
1 0

0 𝑒
𝑖𝜋

4

] [
0
1
] =  [

0

𝑒(
𝑖𝜋

4
)
] =  𝑒

𝑖𝜋

4 [
0
1
] 

𝑇|1⟩ = 𝑒
𝑖𝜋
4 |1⟩ 

It transforms the state 𝛼|0⟩ + 𝛽|1⟩ to 𝛼|0⟩ + 𝑒𝑖𝜋 4⁄ 𝛽|1⟩

𝑇|𝜓⟩ = [
1 0

0 𝑒
𝑖𝜋

4

] [
𝛼
𝛽] =  [

𝛼

𝛽𝑒
𝑖𝜋

4
] 

The following figure shows quantum T- gate and the table gives the truth table. 

𝛼|0⟩ + 𝑖𝛽|1⟩ 𝛼|0⟩ + 𝛽|1⟩ S 

𝛼|0⟩ + 𝑒𝑖𝜋 4⁄ 𝛽|1⟩𝛼|0⟩ + 𝛽|1⟩ T 
21



The truth table is as follows 

Input Output 

|0⟩ |0⟩ 

|1⟩ 𝑒
𝑖𝜋
4 |1⟩ 

𝛼|0⟩ + 𝛽|1⟩ 𝛼|0⟩ + 𝑒𝑖𝜋 4⁄ 𝛽|1⟩

Multiple Qubit gates 

As mentioned in the earlier section, Single qubits are interesting, but individually they offer less 

computational advantage. It is hence essential to look for multiple qubit system and the operation on 

them. Quantum gates operating on multiple qubits are called as multiple qubit gates. Some of them are 

as follows  

1. Controlled Gate (CNOT)

The CNOT gate is a two-qubit operation, where the first qubit is referred as the control qubit (A) and 

the second qubit as the target qubit (B). If the control qubit is |1⟩  then it will flip the target qubit state 

from|0⟩ to |1⟩ or from |1⟩ to |0⟩. When the control qubit is in state |0⟩ then the target qubit remains 

unchanged. In fact CNOT applies X on target whenever its control is in state |1⟩ 

The symbolic representation is as follows. The upper line represents control qubit and bottom line 

represents target qubit 

In the combined qubit, first term is control qubit and the second term is target qubit. For ex, in |𝐴𝐵⟩, A 

is control qubit and B is target qubit 

NOTE: In diagram the control qubit is represented by        and target is represented by 

Discussion for 4 different input states 

1. Input state |00⟩ (Control qubit = 0, Target qubit = 0): Both the bits remain unaltered. Hence, the

output state is the same as the input state or |00⟩ → |00⟩

2. Input state |01⟩ (Control qubit = 0, Target qubit = 1): Both the bits remain unaltered. Again, the

output state is the same as the input state or |01⟩ → |01⟩

3. Input state |10⟩ (Control qubit =1, Target qubit = 0): The target qubit is flipped to 1. Therefore,

the output state has both qubits 1 or |10⟩ → |11⟩

4. Input state |11⟩ (Control qubit =1, Target qubit = 1): The target qubit is flipped to 0. Therefore,

the output state becomes |10⟩ or |11⟩ → |10⟩.

|𝐴⟩                                                                Control Qubit 

|𝐵⟩    |𝐵⨁𝐴⟩Target Qubit 

22



The truth table of a CNOT gate is as follows 

Input Output 

|00⟩ |00⟩ 

|01⟩ |01⟩ 

|10⟩ |11⟩ 

|11⟩ |10⟩ 

We know that two qubits can be in any one of four possible states represented as |00⟩ |01⟩|10⟩ and |11⟩. 
The matrix form of them are 

|00⟩ = [

1
0
0
0

] |01⟩ = [

0
1
0
0

]   |10⟩ = [

0
0
1
0

] |11⟩ = [

0
0
0
1

] 

The state qubit is |⟩ = 00|00⟩ + 01|01⟩ + 10|10⟩ + 11|11⟩. When it is operated by CNOT we get 

CNOT( 00|00⟩ + 01|01⟩ + 10|10⟩ + 11|11⟩) = 00|00⟩ + 01|01⟩ + 10|11⟩ + 11|10⟩ 

From this we can construct the matrix form of CNOT gate as follows (it is 4 ×4 matrix) 

The |00⟩remains same as |00⟩.  Hence the first column is [

1
0
0
0

] 

The |01⟩remains same as |01⟩.  Hence the second column is [

0
1
0
0

] 

The |10⟩changes to |11⟩.  Hence the third column changes from [

0
0
1
0

] to [

0
0
0
1

] 

The |11⟩changes to |10⟩.  Hence the fourth column changes from [

0
0
0
1

] to [

0
0
1
0

] 

Hence the matrix form of CNOT gate is 

𝐶𝑁𝑂𝑇 = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] 

Ex (1) S.T the |00⟩remains same as |00⟩ when operated by CNOT 

CNOT|00⟩ = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] [

1
0
0
0

] 

CNOT|00⟩ = [

1 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 0 + 0

] = [

1
0
0
0

] 
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 ∴ CNOT|00⟩ = |00⟩ 

Ex (2) S.T the |01⟩remains same as |01⟩ when operated by CNOT 

CNOT|01⟩ = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] [

0
1
0
0

] 

CNOT|01⟩ = [

1 + 0 + 0 + 0
0 + 1 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 0 + 0

] = [

0
1
0
0

] 

∴ CNOT|01⟩ = |01⟩ 

Ex (3) S.T the |10⟩changes to |11⟩ when operated by CNOT 

CNOT|10⟩ = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] [

0
0
1
0

] 

CNOT|10⟩ = [

0 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 1 + 0

] = [

0
0
0
1

] 

∴ CNOT|10⟩ = |11⟩ 

Ex (4) S.T the |11⟩changes to |10⟩ when operated by CNOT 

CNOT|11⟩ = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] [

0
0
0
1

] 

CNOT|11⟩ = [

0 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 0 + 1
0 + 0 + 0 + 0

] = [

0
0
1
0

] 

∴ CNOT|11⟩ = |10⟩ 

2. Swap Gate

In quantum computation sometimes we need to move state between two qubits, ie from control to 

target and vice versa. This is nothing but swapping of the states and the gate used for this purpose is 

known as SWAP gate. 

SWAP gate is a two qubit operation gate and swaps the state of the two qubits involved in the operation. 

It contains 3 CNOT gates.  
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The action of SWAP gate is explained by taking two CNOT gates as follows where |10⟩ is swapped to 

|01⟩ 

But for effective swapping of the states there must be minimum of 3 CNOT gates. The SWAP circuit 

is as given below  

It is also represented as 

The matrix form of SWAP gate is given by 

𝑆𝑊𝐴𝑃 = [

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

] 

Ex (1) S.T the state |00⟩ remains undisturbed by the SWAP gate operation 

Consider the SWAP circuit diagram 

|1⟩ 

|0⟩ 

01⟩ 

|1⟩ 

|1⟩ 

|0⟩ 

|1⟩ 

|10⟩ 

|1⟩ 

|0⟩ 

|01⟩ 

|0⟩ 

|1⟩ 

|10⟩ 
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We know that in CNOT gate if the control qubit is in |1⟩ state then it will flip the target qubit from |0 

to |1 and vice versa (otherwise no). So, when |00⟩ is given, the 1st CNOT is not satisfied. We stay in 

the state |00⟩.The 2nd CNOT's control is not satisfied. We stay in the state |00⟩.The 3rd  CNOT' is also 

not satisfied. We finally stay in the state |00⟩. The same can be verified using matrix analysis as follows 

𝑆𝑊𝐴𝑃|00⟩ = [

1 0

0 0

0 0

1 0
0 1

0 0

0 0

0 1

] [

1

0
0

0

] = [

1 + 0 + 0 + 0

0 + 0 + 0 + 0
0 + 0 + 0 + 0

0 + 0 + 0 + 0

] = [

1

0
0

0

] 

∴ 𝑆𝑊𝐴𝑃|00⟩ = |00⟩ 

Ex (2) S.T the state |10⟩ is swapped to |01⟩  by SWAP gate operation 

𝑆𝑊𝐴𝑃|10⟩ = [

1 0

0 0

0 0

1 0
0 1

0 0

0 0

0 1

] [

0

0
1

0

] = [

0 + 0 + 0 + 0

0 + 0 + 1 + 0
0 + 0 + 0 + 0

0 + 0 + 0 + 0

] = [

0

1
0

0

] 

∴ 𝑆𝑊𝐴𝑃|10⟩ = |01⟩ 

Truth table of swap gate is as follows 

Input Output 

|00 |00 

|01 |10 

|10 |01 

|11 |11 

3. Controlled-Z Gate

CNOT gate can be extended in a way that it can work on two qubits based upon a single control qubit. 

C-Z gate is one such gate. In this gate there is one control qubit and Z unitary matrix as target qubit.  If 

the control qubit is in state |1 then it acts on target Z and will flip the state (ie, there is 1800 phase 

change)  

The circuit is represented as follows. 

Some of the examples are given below 

Z 
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The truth table of a controlled-Z gate: 

Input Output 

|00 |00 

|01 |01 

|10 |10 

|11 -|11 

The action of a controlled-Z gate is specified as follows 

𝑈𝑍 = [ 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

] 

Ex (1): S.T the state |10 remains un affected when operated by C-Z gate 

𝑈𝑍|10⟩ = [ 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

] [

0
0
1
0

] = [

0 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 1 + 0
0 + 0 + 0 + 0

] = [

0
0
1
0

] 

∴ 𝑈𝑍|10⟩ = |10⟩

Ex (2): S.T the state |11 flips to - |11 when operated by C-Z gate 

𝑈𝑍|11⟩ = [ 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

] [

0
0
0
1

] = [

0 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 0 − 1

] = −[

0
0
0
1

] 

∴ 𝑈𝑍|11⟩ =  − |11⟩

4. Toffoli Gate

The Toffoli gate or controlled-controlled-NOT (CCNOT) gate is a logic gate having three input 

qubits. The first two bits are control bits which remain unaffected by the action of Toffoli Gate. The 

third is the target bit which is inverted (ie, changes from 0 to 1 or 1 to 0) if both the control bits are 1; 

else it does not change. 

|0    |0 

|0         |0 

No change because 

control bit is |0 

Z 

|0    |0 

|1         |1 

No change because 

control bit is |0 

Z 

|1    |1 

|0         |0 

Control bit acts on target 

but there is no flip of |0 

Z 

|1    |1 

|1        -|1 

Control bit acts on target 

and flip  |1 to -|1 

Z 
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The circuit and the truth table are as follows 

Some examples are given here 

 

The Toffoli gate can be expressed as an 8 by 8 matrix as follows 

𝑈𝑇 =

[
 
 
 
 
 
 
 
1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
1

0
0
0
0
0
0
1
0

 

]
 
 
 
 
 
 
 

 

. 
NOTE: 

 This is a reversible (no information is lost) and universal (all reversible logic circuits can be built using
Toffoli gates).

 It can be verified that this matrix is unitary and thus the Toffoli gate is a legitimate quantum gate. The
quantum Toffoli gate can be used to simulate irreversible classical logic gates and ensures that the
quantum gates are capable of performing any computation that a classical computer can do

Limitations of quantum computing 

As of now there are some technical difficulties and limitations in building quantum computers. Some 

of them are 

 As the number of quantum gates in a network increases, more interacting qubits are involved,

and it is very difficult to monitor their interactions

Input Output 

A B C A/ B/ C/ 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 1 1 1 

1 1 1 1 1 0 

A      A/ 

B      B/ 

C  C/ 

|0  |0 

|0   |0 

|0  |0 

|0  |0 

|1   |1 

|1  |1 

|1  |1 

|1   |1 

|0  |1 

|1  |1 

|1   |1 

|1  |0 
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 The surrounding environment will affect the interactions of qubits (both superposition and

entanglement).  As a result the quantum information will spread outside the quantum computer

and be lost into the environment, thus spoiling the computation. This process is called de-

coherence. How long quantum information will survive before it is spread out is known as de-

coherency time

 The number of operations that can be performed before the information is lost due to de-

coherency is therefore limited.

 Quantum chips must be kept at very low temperature to create super positions and entanglement

of qubits

 The final output of the quantum computers is in the form of a probability. When the question

is repeated, the answer changes. Hence repeated operations are required to get correct answer.

Some physicists are pessimistic about the prospects of substantial further progress in quantum 

computer technology. Some optimistic researchers believe that practical quantum computers will 

appear in a matter of years rather than decades. We tend towards the optimistic end because 

* * * * *
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   Electrical Conductivity in Metals 
 

Introduction: 

Materials can be classified into three types based on the conductivity of heat and electricity. 

They are; 

1. Conductors  (Example : Metals – Copper, Aluminum, Silver, Gold) 

2. Semiconductors (Example : Germanium, Silicon) 

3. Insulators ( Example : Wood, Mica, Glass) 

Electron Theory of Metals 
The electron theory of metals explains the following: 

 Structural, electrical and thermal properties of materials. 

 Elasticity, cohesive force and binding in solids. 

 Behaviour of conductors, semiconductors, insulators etc., 

In solids, electrons in the outermost orbit of atoms are called valance electrons, which 

determine the properties of the materials. The electron theory is applicable to all solids (both 

metals and non-metals). This theory explains the electrical, thermal and magnetic properties of 

solids. 

 

Classical Free Electron Theory (Drude-Lorentz Theory): 

 

Mobility, Current density, Conductivity and Resistivity. 

 

Mobility of electrons: Mobility is defined as the magnitude of the drift velocity acquired by 

the electrons in unit electric field. The expression for the mobility is  


m

e

E

vd   

Current density: Consider a conductor carrying electric current I with area of cross section A 

perpendicular to the current. The current density J is defined as the ration of current I to 

the area of cross section A. Hence  

A

I
J   

It is observed that the current density J is proportional to the applied electric field E in a 

conductor. And hence 

EEJ  Jor                

The constant of proportionality f is called Electrical Conductivity. 

 

Electrical conductivity in metals: Electrical conductivity of a metal is the ability of the 

metal to allow electrons to flow through it. The expression for electrical conductivity of a 

metal is given by 


m

ne2


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Where n is the number of free electrons/unit volume &  is the relaxation time.  
 

Concept of Phonon: A Phonon is a quantum of lattice vibration, the collective motion of 

atoms constituting a crystal. The Energies and Momenta of Phonons are quantized. It is often 

characterized as Heat Energy. The study of phonon is an important part of solid state physics. 

The phonon plays an important role in many of the physical properties of solids such as the 

thermal conductivity and the electrical conductivity. The conduction electrons in a metal 

collide against lattice ions during the motion. The interaction is considered to be of type 

phonon exchange. This results in non-radioactive transitions. 

 

Electrical resistivity: It is the property of the metal and defined as the reciprocal of electrical 

conductivity.  

     i.e., 



2

1

ne

m
  

In metals, the resistivity is due to the scattering of conduction electrons. Scattering of 

electrons may be due to lattice vibrations or due to impurities. 

a) Scattering due to lattice vibrations (Phonons) – When the temperature of metal is 

increased, due to vibrations of lattice ions, the scattering of electrons may take place. The 

resistivity due to this type of scattering is called ‘ideal resistivity’ denoted by ph. This is 

temperature dependent. 

b) Scattering due to impurities – The impurities in metals may also scatter electrons and the 

resistivity due to this is denoted by i. This is temperature independent. 

      Thus in any metal, the total resistivity is  
 

iph    

This is known as Mattthienssen’s rule 

Variation of resistivity with temperature: 

 
  

Success of Classical Free Electron Theory: 
.. 

The successes of this theory are:- 

1. It verifies Ohm’s law i.e., V = IR 

2. It derives Wiedemann-Frenz i.e., T
E

T 


  

3. It explains Electrical (E) and Thermal conductivity (T) of metals 

4. It explains optical properties of metals. 
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Failures/Drawbacks of Classical Free-Electron Theory: 
 

1. Specific Heat (CV) : The specific heat of a gas at constant volume is given by 

RCV 2
3 , where R is the universal gas constant 

But experimentally it was observed that the specific heat of a metal by its conduction 

electrons is given by 

RTCV

410  

Thus, the experimental value of Cv is very much lesser than the expected value of Cv. 

According to classical free electron theory Cv is independent of temperature, but the 

experimental value of Cv is directly proportional to temperature. Hence classical free 

electron theory fails to explain Cv. 

2. Mean Free Path () : According to classical free electron theory, the mean free path . 

 c , where c  is the root mean square velocity &  is the relaxation time of 

conduction electrons, we also know that 






22 ne

m
or

ne

m
   

By substituting the values of e, m, n &  for a metal,  can be calculated. i.e.,                     

 = 2.47x10-14 s, where c is average velocity of the electron and is equal to 1.15x105 

m/s. In this case,  = 1.15x105x2.47x10-14 = 2.85x10-9 m = 2.85 nm. 

But the experimental value of  is found to be 0.285 nm, which is 10 times less than the 

value obtained from classical free electron theory. Hence classical free electron theory 

fails to explain . 

3. Temperature dependence of electrical conductivity: According to classical free 

electron theory, the electrical conductivity of metals is given by 

)1(
2

 


 or
m

ne

 
 On the basis of classical free electron theory, the energy of an electron is given by 

    

)2(
3

2
32

2
1  Tvor

m

kT
vkTmv ththth

 
From definition, mean collision time is inversely proportional to vth . 

       )3()(
11

 Tv
T

or
v

th

th


 

From equations (1) & (3), )4(
1


T

  

But experimentally it has been observed that,

 

)5(
1


T

  

Hence from equations (4) & (5), it is clear that the prediction of classical free electron 

theory is not in agreement with the experimental observations. Thus the classical free 

electron theory fails to explain dependence of T on . 

4. Dependence of electrical conductivity on electron concentration: As per the 

classical free electron theory, the electrical conductivity of metals is given by 

        

nor
m

ne
 




2
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Where ‘n’ is the electron concentration (free electrons) 

Hence, divalent & monovalent metals should possess much higher electrical 

conductivity than monovalent metals. This is contrary to the experimental observations 

that the monovalent element metals such as copper & silver are more conducting than 

Zinc (divalent) & aluminum (trivalent).  

Or in other words, the theory predicts the direct dependence of electrical conductivity 

() on number of free electrons per unit volume (n) called number density. But 

experiments have revealed that Cu > Zn > Al even though the number densities nCu < 

nZn < nAl. Hence it fails to explain the dependence of electrical conductivity  on the 

number free electrons per unit volume n. Thus the prediction of classical free electron 

theory that n does not always hold good. Hence classical free electron theory fails 

to explain dependence of n on . 
 

Concentration of Electrons (n) & Electrical Conductivity () of some metals 

Metal Valency 
Electron Concentration  

n in per m
3
 

Electrical Conductivity  

 in Siemen/meter (S/m) 

Cu - 29 1 8.45x10
28 5.88x10

7 

Zn - 30 2 13.10x10
28 1.09x10

7 

Al - 13 3 18.06x10
28 3.65x10

7 

 

Quantum Free Electron Theory (Summerfeld Theory): 

To overcome the drawbacks of classical free electron theory, Sommerfeld proposed quantum 

free electron theory. He treated electron as a quantum particle. He retains the vital features of 

classical free electron theory and included the Pauli Exclusion Principle & Fermi-Dirac 

statistics. The following are the assumptions of quantum free electron theory. 

 

1. The free electrons in a metal can have only discrete energy values. Thus the energies 

are quantized. 

2. The electrons obey Pauli’s Exclusion Principle, which states that there cannot be more 

than two electrons in any energy level. 

3. The distribution of electrons in various energy levels obeys the Fermi-Dirac quantum 

statistics. 

4.  Free electrons have the same potential energy everywhere within the metal, because 

the potential due to ionic cores is uniform throughout the metal. 

5. The force of attraction between electrons & lattice ions and the force of repulsion 

between electrons can be neglected. 

6. Electrons are treated as wave-like particles. 

  

 

 

-  
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Fermi - level, Fermi - energy and Fermi - factor 

As we know that for a metal containing N atoms, there will be N number of energy levels in 

each band. According to Pauli’s exclusion principle, each energy level can accommodate a 

maximum of two electrons, one with spin up (+½) and the other with spin down (-½). At 

absolute zero temperature, two electrons with opposite spins will occupy the lowest available 

energy level. The next two electrons with opposite spins will occupy the next energy level and 

so on. Thus, the top most energy level occupied by electrons at absolute zero temperature is 

called Fermi-energy level. The energy corresponding to that energy level is called Fermi-

energy.  

The energy of the highest occupied level at zero-degree absolute is called Fermi energy, and 

the energy level is referred to as the Fermi level. The Fermi energy is denoted as EF. 

All energy levels below Fermi level are completely filled and above which all energy levels are 

completely empty.  

 

 

 

 

 

At temperatures above absolute zero, the electrons get thermally excited and move up to higher 

energy levels. As a result, there will be many vacant energy levels below as well as above 

Fermi energy level. Under thermal equilibrium, the distribution of electrons among various 

energy levels is given by statistical function f(E). The function f(E) is called Fermi-factor and 

this gives the probability of occupation of a given energy level under thermal equilibrium. The 

expression for f(E) is given by 

       
1

1




 kTEE Fe
Ef  

Where f(E) is called Fermi-Dirac distribution function of Fermi factor, EF is the Fermi energy, 

k is the Boltzmann constant and T is the temperature of metal under thermal equilibrium. 

Note: 1. The Fermi-Dirac distribution f(E) is used to calculate the probability of an electron               

occupying a certain energy level. 

          2. The distribution of electrons among the different energy levels as a function of                

temperature is known as Fermi-Dirac distribution function. 

Density of States (DoS) : 

According to band theory, energy bands are formed in solids and in a band the spacing 

between two successive energy levels decreases with increase in energy. 

EF 

E
n

er
g

y
 

T = 0 K 
Vacant energy levels 

Fermi Energy 

Filled energy levels 



Applied Physics for CSE Stream                         Module – 4                        Dr. Shivalinge Gowda, MRIT, Mandya  

7 
 

The Density of States is defined as the number of energy states available per unit volume of the 

material in the unit energy range in the valence band of the material. It is mathematically a 

continuous function denoted g(E  ).  

The number of energy levels in the energy range E and E+dE per unit volume of the material is 

given by g(E) dE. 

  dEE
h

m
dEEg 2

1
2

3

3

28
















 

 
 

Density of states function vs Energy 

Variation of Fermi factor with Energy and Temperature 

Let us consider the different cases by considering the Fermi factor equation 

   
1

1




 kTEE Fe
Ef  

Case (i) :  f(E) for E < EF at T = 0 K; 

When;  E < EF & T = 0 K, from the probability function f(E) we have  

     1
10

1

1

1








e
Ef  

i.e., f(E) = 1 for E < EF at T = 0 K. 

This implies that at absolute zero temperature, all the energy levels below EF are 100% 

occupied which is true from the definition of Fermi energy. 

Case (ii) :  f(E) for E > EF at T = 0 K; 

When E > EF  & T = 0 K, then  f(E) becomes  

    0
1

1

1

1

1











e
Ef  

i.e., f(E) = 0  for E > EF at T = 0 K. 

This implies that at absolute zero temperature, all the energy levels above EF are unoccupied 

(completely empty) which is true from the definition of Fermi energy. 

Case (iii) :  f(E) for E = EF at T = 0 K; 

When E = EF  & T = 0 K, then  f(E) becomes  
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    ateIndetermin
1

1
0

0 



e

Ef  

i.e., f(E) =   for E = EF at T = 0 K. 

Hence, the occupation of Fermi level at T = 0 K has an undetermined value ranging between 

zero and unity (0 & 1). The Fermi-Dirac distribution function is discontinuous at E = EF for    

T = 0 K. 

Case (iv) :- f(E) for E = EF at T > 0 K; 

When E = EF  & T > 0 K, then  f(E) becomes  

   
2

1

11

1

1

1
0








e

Ef  

i.e., f(E) = ½  for E = EF at T > 0 K. 

If  E « EF, the probability starts decreasing from 1 and reaches 0.5 (½) at E = EF and for           

E > EF, it further falls off as shown in figure. In conclusion, the Fermi energy is the most 

probable or average energy of the electrons in a solid. 

The variation of Fermi factor with energy and temperature is as shown in figure given below. 

 

Importance of Fermi Energy 

 Fermi energy level is used to separate the vacant and filled states at 0 K. 

 It is used to know the status of the electrons. 

 Electrons are completely filled below the Fermi energy level and completely empty above 

the Fermi level at 0 K. 

 Above 0 K some electrons absorb thermal energy and they jump to the higher energy 

levels. 

Fermi Temperature (TF) : - Fermi temperature is the temperature at which the average 

thermal energy of the free electron in a solid is equal to the Fermi energy at 0 K. 

But the thermal energy possessed by electrons is given by the product kT. 

Thus, when T = TF,  kTF = EFo is satisfied 

But all practical purposes, EFo = EF                      
k

E
T = E kT F

FFF    
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This is the expression for Fermi temperature. 

For metals, we know that EF will be of the order of few eV, say EF = 5 eV, then 

 
KTF 58000

10x38.1

10x602.1x5
23

19






 

Fermi velocity (vF) : - The energy of the electrons in metals at Fermi level is EF. The velocity 

of the electrons which occupy the Fermi level is called Fermi velocity vF. 

2/1

2

F

2
                                    

2

1
                                        













m

E
vor

mvE

F
F

F

 

This is the expression for Fermi velocity. 

Merits or Success of Quantum free electron theory: 

The quantum free electron theory solves the flaws of the classical free electron theory which 

are discussed below. 

1. Specific heat of free electrons: According to quantum free electron theory, the electrons 

occupying energy levels close to EF can absorb heat energy. Such electrons constitute a 

very small percentage of the total number of free electrons. Hence the specific heat of free 

electrons is given by  

 RT
E

k
C

F

V

2
  

Since the value of EF ranges from 1 to 10 eV, by taking a typical value of EF = 5 eV, we get 

 410
2 

FE

k
 

 RTCV

410  

which is in agrees well with the experimental results. 

2. Temperature dependence of resistivity or conductivity in metals: According to 

quantum free electron theory, the expressions for electrical conductivity & resistivity of a 

metal are given by 

 






















 



 FF

F

v

ne

vm
or

vm

ne
2

2

 

In the above expression only the mean free path  is the temperature dependent quantity.  

)1(   

In classical theory, the collision was seen as a particle bouncing off another. In the quantum 

understanding, an electron is viewed as a wave travelling through the medium. If r represents 

the amplitude of the oscillation of the lattice ions can be considered to present a circular cross 
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section of area r2 that blocks the path of the electron waves. Hence electron waves are 

scattered more effectively results in a reduction of mean free path (Thusis inversely 

proportional to the area of cross section.  

i.e.,  )2(
1

2


r
  

But the area of cross section r2 is directly proportional to the absolute temperature. 

T
T

T

Trei















 or                    
1

             

get  we(1)equation in   of  values thengsubstitutiBy 

 (3) 
1

   

.,. 2

 

This is exactly same as the experimental prediction. Thus quantum free electron theory 

properly explains the dependence of   on T. 

 

3. Dependence of electrical conductivity on electron concentration: According to quantum 

free electro theory, the electrical conductivity in metals is given by 

   











Fvm

ne 


2

   

From the above equation it is clear that the electrical conductivity depends on both the 

electron concentration n and 











Fv


 .  

 If we compare the cases of copper and aluminium, the value of n for aluminium is 2.13 

times higher than that of copper. But the value of /vF for copper is about 3.73 times higher 

than that of aluminium. Thus the conductivity of copper is more than that of aluminium. 

Problems :  

1. The free electron density of aluminium is 18.10x1028 m-3. Calculate its Fermi energy at      

0 K. Planck’s constant and mass of free electron are 6.626x10-34 Js and 9.1x10-31 kg. 

Solns. 

n = 18.10x1028 m-3 

Planck’s constant, h = 6.626x10-34 Js 

Mass of an electron, m = 9.11x10-31 kg 

 

 

 

 

 

2. Calculate the density of states for copper at the Fermi level for T = 0 K. Given that, 

electron density of copper is 8.5x1028 electrons /m3. 

eV
x

x
Jx

xx

xx

xn

m

h
EF

68.11
10602.1

108689.1
108689.1

1010.183

1011.98

)1060626(3

8

19

18
18

3/2
28

31

2343/22

0
















































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Solns. 

n = 8.5x1028 m-3 

Planck’s constant, h = 6.626x10-34 Js 

Mass of an electron, m = 9.1x10-31 kg 

  

  

    

 

 

3. Find the probability of an electron occupying an energy level 0.02 eV above the Fermi 

level at 200 K and 400 K in a material. 

Solns. 

E - EF = 0.02 eV = 0.02x1.602x10-19 J = 3.204 x10-21 J 

T1 = 200 K & T2 = 400 K 

 

 

 

 

4. Show that the sum of the probability of occupancy of an energy state at E above the 

Fermi level and that at E below the Fermi level is unity. 

Solns.     

 

 

    1              ..

)(at  level  Fermibelow the ocuupation ofy probabilit  theis  

 & 

  )(energy at  level  Fermi theabobe ocuupation ofy probabilit  theis  Let  







b

E

a

E

F

b

E

F

a

E

EfEfTS

EEEEf

EEEEf

 

   

   

   

        1

1

1

1

1

1
        ΔEEor  E  ΔE)(E    Elevel,  Fermibelow theenergy For 

1

1
           ΔEEor  E  ΔE)(E    Elevel,  Fermi theaboveenergy For 

1

1
know that  We

FF

FF
























kTEkTE

b

E

a

E

kTE

b

E

kTE

a

E

kTEE

ee
EfEf

e
Ef

e
Ef

e
Ef

F

 

3/222/3

2

3

8
,

8

2
)( 2

1






























 n

m

h
EwheredEE

h

m
dEEg FF

 
2/1

2/3

234

312/3

2
05.7

10626.6

101.98

2

8

2
)( 2

1

x
x

xx
E

h

m
Eg F 




























 
eVJx

xx

xx

xn

m

h
EF 05.7101293.1

105.83

101.98

10626.63

8

18

3/2
28

31

2343/22








































 







      24.0
1188.3

1

1

1

1

1

1

1
1594.1

2001038.1

10204.3
23

21
11


































e
e

e
Ef

xx

xkTEETat
F

      36.0
17855.1

1

1

1

1

1

1

1
5797.0

4001038.1

10204.3
23

21
22


































e
e

e
Ef

xx

xkTEETat
F
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   

   

    1       

1
1

1

11

11

1

1

1

1

1

1

,    Hence.,
1

          ,Put      

11






























b

E

a

E

x
x

x

b

E

a

E

kTEkTE

EfEf

x

x

x

x

xxx
EfEf

x
exe

 

 

5. Calculate the probability of an electron occupying an energy level of 0.05 eV at 200 K 

above and below the Fermi level.  

    ? &    ?

K 200 T     eV, 05.0EE

Soln.

F





b

E

a

E EfEf

 

 

   

 

    17615.02385.0

7615.0
3132.1

1

13132.0

1

1

1

1

1
   K., 200 T At,   

  
1

1
        ΔEEEor    ΔE)(EE    level, Fermi  thebelowenergy For 

2385.0
1927.4

1

11927.3

1

1

1

1

1
   K., 200 T At,   

 Jx100.05x1.602 eV 05.0EEor    ΔE)(EE   level, Fermi  theaboveenergy For 

16087.1

5001038.1

x100.05x1.602

FF

16087.1

5001038.1

x100.05x1.602

-19

FF

23

19-

23

19-





































































b

E

a

E

xx

b

E

kTE

b

E

xx

a

E

EfEf

e
e

Ef

e
Ef

e
e

Ef

 

6. Find the temperature at which there is 1 % probability that a state with 0.5 eV energy above 

the Fermi energy is occupied. 

 

   

K
T

ee

ee

or

ee

or
e

EfTKW

Ef

TT

TxTx

TxTx

kTEE F

1263
4.595

5804
Tor     595.4)99ln(

5804
                

991100or       100
01.0

1
1                  

1

1

1

1
01.0                  

1

1

1

1
01.0                         

1

1
            ..

?T

 0.01  % 1

     J100.5x1.602xeV 5.0EE

Soln.

58045804

5804

1038.1

100.5x1.602x

5804

1038.1

100.5x1.602x

19-

F

23

19-

23

19-

































































































 

7. The Fermi level in potassium is 2.1 eV. What are the energies for which the probability of 

occupancy at 300 K are 0.99, 0.01 and 0.5? 
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        

 

  0.5Effor  ?  E  Find, &

0.01Effor  ?  E  Find,

 0.99Effor  ?  E  Find,

    eV 2.1E potassiumFor 

Soln.

33

22

11

F









 

          

   
 
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x

xx

Ef

slly

eV

x

xx

Ef

slly

eV

x

xx

Ef

EfEfkT

EE

Ef
e

e
EfTKW

F

kTEE

kTEE
F
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1
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1
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lnkTEE
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1
01.0
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3001038.1
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lnkTEE
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lnkTEE
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1
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1
lnkTEEor           1
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1
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1
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1
or        

1

1
            ..

19

23

3

F3
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19

23

2

F2

22

19

23

1

F1

11

F












































































































 

8. Calculate the Fermi energy in eV for a metal at 0 K, whose density is 10500 kgm-3, atomic 

weight is 107.9 and it has one conduction electron per atom. 

Solns. 

Density of metal, = 10500 kgm-3 

Atomic weight of metal, wt. = 107.9  

Fermi energy, EF = ? 

We know that the concentration of electrons in metal, n is given by 

 

eV
x

x
Jx

xx

xx

x
n

m

h
E

mx

F

51.5
10602.1

108173.8
108173.8

10816.53

1011.98

)1060626(3

8
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107.9

1x  60022x10x    05001

(wt.) weight atomic

atomper  electrons free of no.x    )costant(N sAvogadro'x    )density(
n
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3/2
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3/2

3/22
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26

A

0






















































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REVIEW QUESTIONS 

Long Answer Questions: 

1. Define the terms: Fermi-level, Fermi-energy and Fermi-factor.  

2. Mention the drawback/Failures of classical free electron theory and explain them. 

3. What are the assumptions of quantum free electron theory? 

4. Define the terms: Fermi-temperature, Fermi-velocity and density of states. 

5. What are the successes of quantum free electron theory? Explain. 

6. How quantum free electron theory successfully explain the failures of classical free 

electron theory. 

7. What are the merits of quantum free electron theory? Explain.  

8. Write down the Fermi-Dirac equation for the probability of occupation of an energy level E 

by an electron. Show that the probability of its occupancy by an electron is zero if E > EF 

and unity if E < EF at temperature 0 K. 

9. Define Fermi factor. Explain Fermi Dirac distribution for electrons in a metal at 

temperature T = 0 K and T > 0 K. 

10. Write an expression for the Fermi energy distribution function f(E) and discuss its behavior 

with change in temperature. Plot f(E) versus E for T = 0 K, and T > 0 K. 

11. Explain the dependence of electrical conductivity on temperature and electron 

concentration on the basis of classical free electron theory. 

12. Write down the difference between classical and quantum free electron theories. 

 

Problems: 

1. Obtain the value of f(E) for E - EF = 0.01 eV at T = 300 K. 

2. Find the probability that an energy level at 0.2 eV below Fermi level being occupied at 

temperatures 300 K and 900 K. 

3. At what temperature can we expect a 10% probability that electron in silver have an energy 

which 1% above the Fermi energy? The Fermi energy of silver is 5.5 eV. 

4. Evaluate the Fermi function for an energy 0.04 eV at T= 330 K above the Fermi energy. 

5. Show that the probability of occupation above the fermi level is same as the non-

occupation probability below the fermi level for given energy and temperature. 

 

* * * * END * * * * 
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Superconductivity: 

Introduction: Lord Kamerlingh Onnes discovered the phenomenon of superconductivity in 

the year 1911. When he was studying the temperature dependence of resistance of Mercury at 

very low temperature he found that resistance of Mercury decreases in temperature up to a 

particular temperature Tc = 4.15 K and below this temperature the resistance of mercury 

abruptly drops to zero. Between 4.15K and 0K Mercury offered no resistance for the flow of 

electric current. This phenomenon is reversible and material becomes normal when once again 

temperature was increased above 4.15 K. This phenomenon is called superconductivity and 

material which exhibits this property is named as superconductor.  

Definition: Superconductivity is defined as “The phenomenon in which resistance of certain 

metals, alloys and compounds drops to zero abruptly, below certain temperature is called 

superconductivity. 

Variation of Resistivity with Temperature: The variation of the resistivity of a 

superconductor, pure and impure metals with temperature is as shown in the figure below.  

  
Critical Temperature: The temperature, below which materials exhibit superconducting 

property is called critical temperature, denoted by TC. It is different for different substances. 

The materials, which exhibit superconducting property, are called superconductors. Above 

critical temperature material is said to be in normal state and offers resistance for the flow of 

electric current. Below critical temperature material is said to be in superconducting state. Thus 

TC is also called as transition temperature. 

Meissner’s Effect 
In 1933, Meissner and Ochsenfeld showed that when a superconducting material is placed in a 

magnetic field it allows magnetic lines of force to pass through, if its temperature is above TC. 

If the temperature is reduced below the critical temperature TC, then it expels all the flux lines 

completely out of the specimen and exhibits perfect diamagnetism. This is known as 

Meissner’s effect. Since superconductor exhibits perfect diamagnetism below the critical 

temperature Tc, magnetic flux density inside the material is zero. 
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The expression for magnetic flux density is given by B = 0 (M + H)  

Here B is Magnetic Flux Density, M is Magnetization and H is the applied magnetic field 

strength. For a superconductor, B = 0 at T < TC.  

Thus we get M = − H.  

Thus Meissner’s Effect signifies the negative magnetic moment associated with 

superconductors.  

Critical Field and its Temperature Dependence 

Critical field We know that when superconductor is placed in a magnetic field it expels 

magnetic flux lines completely out of the body and exhibits a perfect diamagnetism. But if the 

strength of the magnetic field is further increased, it is found that for a particular value of the 

magnetic field, 

material looses its superconducting property and becomes a normal conductor. The value of the 

magnetic field at which the transition occurs from the Superconducting state to Normal 

Conducting state is called Critical Field or Critical Magnetic Field and is denoted by HC. It is 

found that by reducing the temperature of the material further superconducting property of the 

material could be restored. Thus, critical field does not destroy the superconducting property of 

the material completely but only reduces the critical temperature of the material.  

The variation of Critical field with temperature below the critical temperature is given by 













2

2

0 1
C

C
T

T
HH  

Here HC is the Critical field at any temperature T less than TC, H0 is the Critical field at T = 0 

K. 
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Types of Superconductors 

Superconductors are classified into two types  

1. Type - I Superconductor or Soft Superconductor 

2. Type - II Superconductor or Hard Superconductor 

Type - I Superconductors: 

Type I superconductors exhibit complete Meissener’s Effect and possess a single value of 

critical field. The graph of magnetic moment Vs magnetic field is as shown in the Fig. below. 

As the field strength increases the material becomes more and more diamagnetic until H 

becomes equal to HC. Above HC the material allows the flux lines to pass through and exhibits 

normal conductivity. The value of HC is very small for soft superconductors. Therefore, soft 

superconductors cannot withstand high magnetic fields. Therefore, they cannot be used for 

making superconducting magnets. Ex. Hg, Pb and Zn.  

 

  

 

 

 

 

 

 

 

 

 

Type - II Superconductors: 

paragraph Superconducting materials, which can withstand high value of critical magnetic 

fields, are called Hard Superconductors. 

 
The graph of magnetic moment Vs magnetic field is as shown in the Fig. Hard 

superconductors are characterized by two critical fields HC1 and HC2. When applied magnetic 

field is less than HC1 material exhibits perfect diamagnetism. Beyond HC1 partial flux 

penetrates and the material is said to be Vortex State. Thus flux penetration occurs through 
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small-channelized regions called filaments. As the strength of the field increases further, more 

and more flux fills the body and thereby decreasing the diamagnetic property of the material. 

At HC2 flux fills the body completely and material losses its diamagnetic property as well as 

superconducting property completely. 

 
The value of HC2 is hundreds of times greater than HC of soft superconductors. Therefore, they 

are used for making powerful superconducting magnets. Ex. : NbTi,  Nb3Sn. 

 

 

Difference between Type - 1 and Type -2 Superconductors 

Type - 1 Superconductor Type -2 Superconductor 

1. They exhibit complete Meissner effect 1. They exhibit partial Meissner effect 

2. These are perfect diamagnetics 2. These are not perfect diamagnetics 

3. These are known as soft superconductors 3. These are known as hard superconductors 

4. They have only one critical magnetic field 4. They have two critical magnetic fields 

5. No vertex (Mixed) state is present 5. Vertex (mixed) state is present 

6. These materials undergoes a sharp transition 

at the critical magnetic field 

6. These materials undergoes a gradual transition 

between two critical magnetic fields 

7.  The highest value of critical magnetic field 

is 0.1 wb/m2 

7.  The upper critical magnetic field is of the 50 

wb/m2 

8. Critical temperature is low (< 10 K) 8. Critical temperature is high (> 10 K) 

9. Applications are very limited 9. They are used to generate very high magnetic 

field. 

10. Examples:- lead, tin, mercury , etc. 10. Examples:- alloys like Nb-Sn, Nb-Ti, Nb-Zr, etc. 

BCS Theory of Superconductivity: 

Bardeen, Cooper and Schrieffer explained the phenomenon of superconductivity in the year 

1957. The essence of the BCS theory is as follows. 

Consider an electron approaching a positive ion core and suffers attractive coulomb 

interaction. Due to this attraction ion core is set in motion and thus distorts that lattice. Let a 

second electron come in the way of distorted lattice and interaction between the two occurs 

which lowers the energy of the second electron. The two electrons therefore interact indirectly 

through the lattice distortion or the phonon field which lowers the energy of the electrons. The 

above interaction is interpreted as electron - Lattice – electron interaction through phonon 

field. 
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It was shown by Cooper that, this attractive force becomes maximum if two electrons have 

opposite spins and momentum. The attractive force may exceed coulombs repulsive force 

between the two electrons below the critical temperature, which results in the formation of 

bound pair of electrons called cooper pairs. 

 
Below the critical temperature the dense cloud of Cooper pairs form a collective state and the 

motion all Cooper pairs is correlated resulting in zero resistance of the material. 

High Temperature Superconductors: 

Superconducting materials which exhibit superconductivity at relatively higher temperatures 

are called high temperature superconductors. Thus high temperature superconductors possess 

higher value of critical temperature compared to conventional superconductors. Most of the 

high temperature superconductors are found to fall into the category of ceramics. In 1986 

George Bednorz and Alex Muller discovered a compound containing Lanthanum, Barium, 

Copper and Oxygen having TC = 30 K was developed. In 1987 scientists developed a 

compound which is an oxide of the form YBa2Cu3O7 which is referred to as 1-2-3 compound 

with TC > 90 K was discovered. 

All high temperature superconductors are oxides of copper and bear Perovskite crystal 

structure characterized by large number of copper-oxygen layers. It was found that addition of 

extra copper-oxygen layer pushes the critical temperature TC to higher values. The super 

currents are strong in the copper-oxygen layer and weak in the direction perpendicular to the 

planes.  

High Temperature superconductors are not commercially available mainly due to their 

current densities and difficulty in forming into wires. Once these difficulties are overcome such 

superconductors find many applications in various fields like zero-loss power transmission 

lines, super- strong magnetic materials and as the materials for levitating trains. 

Following is the list of some of High Temperature Superconductors. 
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Quantum Tunnelling: 

 It is a quantum mechanical phenomenon in which an object such as an electron or atom 

passes through a potential energy barrier. This concept is not possible, according to classical 

mechanics.  Tunneling is an outcome of wave nature of matter and is found in low mass 

particles like electrons, protons, neutrons etc., Probability of transmission of a wave packet 

through a barrier decreases exponentially with the barrier height. When a quantum wave 

reached the barrier, its amplitude will decrease exponentially. Further, this drop in amplitude 

corresponds to a drop in the probability of finding particle further into the barrier. 

 

 
In the regions where the potential energy is higher than the waves energy, the amplitude of the 

wave decays exponentially. If the region is narrow enough, the wave can have a non-zero 

amplitude on the other side. 

Josephson junction:  

  

 A Josephson junction is made by sandwiching a thin layer of a non-superconducting 

material between two layers of superconducting material. The non-superconducting barrier 

separating the two superconductors must be very thin. If the barrier is an insulator, it must be 

about 30 angstroms thick or less. If the barrier is another metal, it can be as much as several 

nanometers thick. In this system, the cooper pairs tunnel through the barrier without resistance. 

This phenomenon of flow of current between two pieces of superconductor separated by a 

normal material is called as Josephson effect and the current is called Josephson current. The 

current flows through the junction even in the absence of external DC voltage. Hence the 

Josephson current is present in the absence of supply voltage. If the external DC voltage is 

applied, current oscillates rapidly with a frequency of several GHz, leading to the development 

of AC voltage. 

DC Josephson Effect:  

 It is the phenomenon of flow of super current through the junction even in the absence 

of external emf. If the voltage across the junction is measured, it gives zero. Consider a 

Josephson junction containing two superconducting films separated by thin oxide layer. Here 

cooper pairs in the superconductor starts tunneling through the oxide layer which are 

represented by wave function. During this process the oxide layer introduces the phase 

difference between input and output wave functions. Due to this, super current flow through 

the junction, even in the absence of external source. The super current through the junction is  

            0SinII CS    
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 CI  is critical current at zero voltage, which depends on the thickness of the junction 

layer and the temperature,   

           0 is Phase difference between the wave functions of cooper pairs 

AC Josephson Effect: 

 When dc voltage is applied across the Josephson junction, it leads to the development 

of oscillating current. In other words, an alternating emf of high frequency is established across 

the junction. This effect is called as AC Josephson effect. The oscillating current is because of 

the fact that, the application of dc voltage across the junction causes the additional phase 

change for the cooper pairs. The energy difference of cooper pairs on both sides is of the order 

of 2eV. 

  Thus the current     0SinII CS   

   is the phase difference and Ic is the critical current. 

 The frequency of the generated AC is 

h

eV
f

2
  

  Where 2eV is the energy difference between the cooper pairs on either side of the 

Junction.  Thus, if a voltage of about 1µV is applied then AC frequency of about 484 MHz can 

be obtained. 
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SQUIDS:  

 SQUID stands for Superconducting Quantum Interference Device. It is an instrument 

used to measure extremely weak magnetic field of the order of 10-13 to 10-21 tesla. Hence it is a 

sensitive magnetometer.  Heart of the SQUID is a superconducting ring containing one or more 

Josephson junctions. Two types of SQUIDS are available. Namely, DC - SQUID and RF - 

SQUID. They work on the principle of Josephson effect. 

 

DC - SQUID:  

 It has two Josephson junctions connected in parallel and works on the interference of 

current from two junctions. It works on the principle of DC Josephson effect which is the 

phenomenon of flow of super current through the junction even in the absence of external emf 

or voltage. 

Construction and working:  
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 The cross sectional view of the arrangement is shown. P and Q are two Josephson 

Junctions arranged in parallel. When current I flows through the point C, it divides into I1 and 

I2. Hence the wave function due to these super currents (cooper pairs) experiences a phase shift 

at P and Q. In the absence of applied magnetic field, the phase difference between the wave 

functions is zero. If the magnetic field is applied perpendicular to the current loop, then phase 

difference between the wave functions will not be zero. This is identified by the sum of the 

currents I1 and I2.  The magnitude of phase difference is proportional to applied magnetic field. 

Hence, even if there is a weak magnetic field in the region will be detected. 

RF SQUID:  

                                    
 It works on the principle of AC Josephson effect. When dc voltage is applied across the 

Josephson junction, it leads to the development of oscillating current. It has single Josephson 

junction. Magnetic field is applied perpendicular to the plane of the current loop. The flux is 

coupled into a loop containing a single Josephson junction through an input coil and an RF 

source. Hence when the RF current changes, there is corresponding change in the flux linked 

with the coil. This variation is very sensitive and is measured. It is also used in the detection of 

low magnetic field. It is less sensitive compared to DC - SQUID. Due to its low cost 

manufacturing, it is commonly used in many applications. 

Problem: - A superconducting tin has a critical field of 306 gauss at 0K and 217 gauss at 2K. 

Find the critical temperature of superconducting tin. 

Data: - H0=306gauss at 0K,  HC=217gaussat 2K=T 
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Applications of Superconductivity is Quantum computing:  

SQUIDs find application of magnetometers to measures very small magnetic fields like human 

brain and heart magnetic fields. But the applications of SQUIDs in quantum computing are as 

follows. 
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a) Charge Qubit:  

 
In quantum computing, a charge qubit is also known as Cooper – pair box. It is a qubit whose 

basis states are charge states. The states represent the presence or absence of excess Cooper 

pairs in the island (dotted region in the Fig.). In superconducting quantum computing, a charge 

qubit is formed by a tiny superconducting island coupled by Josephson Junction to a 

superconducting reservoir. 

b) Flux Qubit:  

Flux qubits (also known as persistent current qubits) are micrometer sized loops of 

superconducting metal that is interrupted by a number of Josephson junctions. These devices 

function as quantum bits. The Josephson junctions are designed so that a persistent current will 

flow continuously when an external magnetic flux is applied. Only an integer number of flux 

quanta are allowed to penetrate the superconducting ring. 

c) Phase Qubit:  

A phase qubit is a current biased Josephson junction operated in zero voltage state with a non-

zero current bias. 

 
This employs a single Josephson junction and two levels are defined by quantum oscillations 

of the phase difference between the electrodes of the junction. DC squid is a type of phase 

qubit. 
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Q. No.  Questions 

1.  State and explain Meissner Effect. 

2.  Define critical field and hence explain its variation with temperature below critical 

temperature. 

3.  Explain Type -1 Type – 2 superconductors with neat figures.  

4.  Distinguish between Type -1 Type – 2 superconductors. 

5.  Describe high temperature superconductors.   

6.  Elucidate the BCS theory of superconductivity.  

7.  Explain the phenomenon of quantum tunneling.  

8.  Define Josephson junction and hence explain DC and AC Josephson effects.  

9.  Define SQUID and describe DC and RF SQUIDs. 

10. Brief out the applications of superconductivity in quantum computing. 

 

Q. No. Numerical problems 

1.  Lead has superconducting transition temperature of 7.26 K. If the initial field at 0 k is 

50x103 A/m, calculate the critical field at 6 K. 

2.  A superconducting tin has a critical temperature of 3.7 K at zero magnetic field and a 

critical field of 0.0306 tesla at 0 K. Find the critical field at 2 K. 

3.  The superconducting transition temperature of lead is 7.26 K. Calculate the initial field 

at 0 K, given the critical field at 5 K is 33.644x103 A/m. 

4.  Calculate the ratio of critical fields for a superconductor at 7 K and 5K, given the 

critical temperature is 8 K. 

5.  The critical field for niobium is 1x105 A/m at 8 K and 2x105 A/m at 0 K. Calculate 

the transition temperature of the element. 

 

* * * * END * * * * 
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Physics of Animation 

Introduction: 

Animation is a method of photographing successive drawings or models to create an illusion of 
movement in a sequence. Since our eyes can retain an image for nearly 0.1 s, when multiple images 
appear fast, the brain blends them into a single moving image.  

In initial days animation was done by drawing or painting pictures on transparent celluloid sheets 
and then photographed but today most of the animation work is done with computer-generated 
imagery or CGI. 

it is entirely manipulated from a 
computer. Even though animators sometime break the laws of physics animation requires an 
understanding of physics and an animator should have a basic understanding of mechanics and 
bio-mechanics. Principles of physics are universal, they can be applied to cartoon-style drawings 
as well as CGI and make audiences to escape reality and enter a fantasy world! 

The Taxonomy of Physics-Based Animation Methods (classifications) 

Since animation is an illusion of movement in sequence one need to consider the physics of motion. 
There are two categories in this. They are 

Kinematics
The study of motion of bodies without considering the actual cause for the motion is known as 
kinematics. Here mass and forces are not considered. 

Dynamics
The study of motion of bodies by considering the actual cause for the motion is known as dynamics.
Here mass and forces are taken into consideration 

In both of these we have two subgroups. They are 

Inverse: It is the study of motion when both the starting and ending points are known. Here
one typically knows where to go, but needs to figure out how to do it. It is also known as
backward. Ex, in robots the motion of its joint angles in robots is inverse or backward

Joint angles 

End effector 
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Forward: It is the study of motion when only the starting point is given. Here the goal is to
predict the final destination. Ex, end effector movement in the robots is forward motion. It
only moves towards the destiny

Frames and Frames per second (FPS) 

In animation successive drawings or pictures are made. Each picture is treated as frame. To create 
the appearance of motion from these images, frames shall be displayed.  

Definition: The number of frames displayed in one second for smooth movement effect is known 
as frame rate, or frames per second (FPS)

The human brain can process only about 10 to 12 FPS, ie, individuals can distinguish separate still 
pictures in a series with a frame rate under 12 FPS. 12 frames do produce the motional effect but 
may look choppy (recall very old black and white movies!!-may be Charlee Chaplin movies).
Hence the frame rate has to be increased to produce smooth moving effects. In cinema, a frame 
rate of 24 frames per second is often used (Different video formats have different FPS). For TV 
the frame rate is 30 FPS

Scale and Size 

Animation of large objects (cricket field, railway stations, dams etc) is not done in their actual size. 
Their size must be reduced several times. This is nothing but scaling. Scaling is not only done for 
larger dimension objects. Even smaller dimensional objects (insects, body organs etc) also need 
scaling.

Definition: The ratio of animation size to the actual size of the object is known as scale or scale 
of animation. It is also defined as the ratio of pixels of the animation to the physical units of 
length.

Scaling is not only done for altering the sizes of the characters but also done in other aspects such 
as movement, energy etc. This is essential to distinguish between other parameters such as weight 
and strength, younger and older etc. 

24 FPS 

12 FPS 

Proper scalingImproper scaling
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For ex: If only the size of the cat and its kitten is scaled down then the kitten will look like small 
adult cat only. Actually kitten will move slower than cat and has lesser strength. Hence the scaling 
is needed to these factors also for better effects

Proportion and Scale (weight and strength) 

When object is scaled its volume and area does not change in equal proportionate. Change in the 
volume is more compare to area. Volume increases by cube times and area increases by square
times. Hence proportionate scaling is very important. Consider the following example.

The weight of a man depends on his body volume and the muscle strength depends on cross 
sectional area. If we want to double the muscle strength the width must be increased 2 times. But 
the weight is not scaled proportionately. Hence care has to be taken while creating larger or smaller 
objects by means of scaling.

Motion and Timing in Animations

Motion is an essential part of animation. Several types of motion need to be considered while 
animating a scene.  Common types of motion are

Linear motion
Parabolic motion
Circular motion
Wave motion or oscillatory motion

Line of action and path of action

All these types are familiar to us. In connection with animation of motion, we define two 
parameters namely line of action and path of action.

Line of action

energetic and alive. There are 3 types of lines of action, the C, reverse C and S curves. Look at the 
following fig. It is clear that the second pose gives better impression than first one
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The path along which the object or character moves is known as path of action or arc. For ex, path 
of bouncing ball, trajectory of projectile, jumping of ballet dancer, path of moving arm etc.

Arcs are used extensively in animation because they create motion that is more expressive and less 
stiff than action along a straight path.

Timing

Timing refers to the time it takes for an action to complete from the starting point to the end. 
Timing is the amount of frames it takes for an action to take place.

Timing can have a huge effect on how we perceive a character. If a character moves with less 
frames rate it will appear to be heavy and likely very big. If a character has high frames rate it will 
appear to be light and probably small. It is explained in the following example

Consider three blocks of same size. 1st block is given 6 frames rate, 2nd block is given 12 frames 
rate and 3rd one is given 24 frames rate. As a result 1st block falls fast giving the illusion of being 
heavy

Timing of action consists of placing objects or characters in particular locations at specific frames 
to give the ill
motion effect (fig-A). Hence we work with very small intervals of time (fig-B).

Spacing

Spacing is the distance an object moves within a defined time for that action (it is also the distance 
an object moves for every frame of that action)
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The main difference between timing and spacing is that timing refers to everything that happens 
over time whereas spacing refers to how much fast something moves.  It is illustrated as follows

Consider two balls moving same horizontal distance in same time. Assume the top ball will be 
moving slowly to begin with, then speed up and then slow down again at the end. The bottom ball
will just begin and keep a constant speed until the end. Both will be in the same position at the 
beginning, middle and end of the animation. To achieve this we are going to change the spacing. 
If we have more drawings near the starting pose, one or two in the middle, and more drawings near 
the next pose lesser drawings make the action faster and more drawings make the action slower.

Linear motion, Uniform motion and timing

A body moving in a straight line is said to be in linear motion. It always move along same direction. 
Ex: a ball rolling on the inclined plane, a ball moving on a horizontal plane, a stone falling under 
gravity etc

In linear motion if the body travels without acceleration (or deceleration) then it is known as 
uniform motion. Here the net force acting on the object is zero and distance travelled between 
consecutive frames is same. Hence timing is very easy. If the speed is less the spacing between the 
frames is less. If the speed is more the spacing is also more
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When the net force acting on the object is not equal to zero then a
law, there will be acceleration (even deceleration also). As a result the object will get faster and 
faster until the force stops acting on it. Now comes one of the Principles of Animation. It is called 
"slow-in and slow-out". 

Slow-in and slow-out

All types of movements start with acceleration and end with deceleration. Even in animation also 
this principle is followed. An object or a character in animated video starts its movements more 
slowly, then picks up speed and finishes with deceleration. As a result the beginning and end of 

- (or ease in) - (or ease out)

.
Slow-in (or ease in) is process in which the body is preparing for stopping and Slow-out (or ease 
out) is the process in which the body is speeding up from a still position.

Slow-in and slow-out is achieved by adjusting the spacing (as explained in the above section). To 
create a slow-out, we need to place the frames close together and then move them apart gradually. 
To create the slow-in we will need to gradually place the frames closer together at the end of the 
animation.

Consider the animation of oscillating pendulum. There are more circles at slow-in and slow-out 
positions and less at middle positions. 

Constant force, acceleration and timing

If the applied force is not varying with time then it is called constant force. Some of the examples 
for constant force are gravitational force, frictional force, force on a charge in uniform electric 
field, force on a charge in uniform magnetic field etc.
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If the force is varying with respect to time then it is variable force. Ex, force on a charge in variable 
magnetic and electric field, spring force etc. Timing of the action is very difficult for motions due 
to variable forces.

Timing for variable force

Normally all the forces exerted by us in everyday life are variable. Force applied during walking, 
running, jumping, skating, dancing etc is a variable one.  If you break the motion into smaller 
segments then force in each segment is treated as constant and timing becomes easier. 

In the below fig, jumping (by girl) is divided into 3 segments. Force is nearly constant over each 
segment. The timing is very short for each of these segments

Timing for constant force and acceleration

If the applied force is constant then the body will move with constant acceleration. The acceleration 
depends on the direction of the applied force. There are 3 possibilities

i. If a constant force is applied on a body at rest then it accelerates
ii. If a constant force is applied in the direction of motion then the body is accelerated
iii. If a constant force is applied in the opposite direction to motion then it is decelerated.

For such type of motions timing is done with odd rule

Odd rule

The distance travelled by the object between two successive frames is calculated by odd rule. 
According to this rule

distance by odd numbers 1,3,5,7 etc during accelerated motion and by multiplying the base 
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Base distance: Base distance is the smallest distance between the two frames.   For a slow-out, 
this is the distance between the first two frames; for a slow-
two frames. It is given by

Explanation:
This rule is applicable to both vertical and horizontal motion.  It is explained 
for a body falling under gravity. Consider a ball falling under gravity with zero 
initial velocity. Distance travelled 

and so on

Here the difference between any two successive distances is an odd number. 
For ex, 4-1 = 3; 9-4 =5; 16-9 = 7 and so on. Hence the rule is named as odd rule

Odd rule multipliers

The process of calculating the distance from the first frame to the current frame and use these 
distances to place the object on specific frames is known as odd rule multiplier. For slow-out, it
is as follows

i. Find the distance between first two frames. I
ii. Multiply it by 1 to get the distance between frame 1 and 2. The total distance travelled

is 0+1=1
iii. Multiply by 3 to get the distance between frame 2 and 3. The total distance travelled is

0+1+3=4
iv. Multiply by 5 to get the distance between frame 3 and 4. The total distance travelled is

0+1+3+5=9
It is summarized as follows

Frame No. 
(A)

Distance between 
successive frames (B)

Distance between 1st

to present  frames (C)
1 -- 0
2 1 0+1=1=12

3 3 0+1+3=4=22

4 5 0+1+3+5=9=32

5 7 0+1+3+5+7=16=42

6 9 0+1+3+5+7+9=25=52
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The same is represented in the following fig. From fig, it may be observed that after the first 
increment, all the others are longer by the same amount (amount of 2- Red arrow mark).
Ie, 3 1 =2; 5 3 = 2; 7 5 = 2 and so on

It is possible to write the relation between A, B and C as follows

Ex: 
If A = 5 then B = 2(5-1)-1 = 7

C = (5 1)2 = 16

This is true even for a horizontal motion also

- motion). Only difference 
is that we have to multiply in the reverse manner ie, 7, 5, 3, 1.
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Odd Rule Scenarios 

Here we summarize the odd rule for 4 different cases.

1. Slow-out process

First of all, find the distance between first two successive frames. It is also known as base distance.
Then multiply it by odd numbers 1,3,5,7 etc to get the distances between consecutive frames.
Finally use squares to multiply the base distance to get the total distance traveled on each frame
(See the above table)
If the total distance is known then the base distance is calculated using the formula

For ex: In the above fig, the total distance is 2m and number of frames is 5 then 

Distance between frame 1 and 2 = 1 × 0.125m = 0.125 m
Distance between frame 2 and 3 = 3 × 0.125m = 0.375 m
Distance between frame 3 and 4 = 5 × 0.125m = 0.625 m
Distance between frame 4 and 5 = 7 × 0.125m = 0.875 m

Total distance = 0.125+0.375+0.625+0.875 = 2m

2. Slow-in process

First, find the distance between the last two frames. Then multiply it by odd numbers in reverse
order, ie 7,5,3,1
If the total distance is known then the base distance is calculated using the formula
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In the above fig, the total distance is 0.9 m and number of frames is 4 then 

Distance between frame 4 and 3 = 5 × 0.1m = 0.5 m
Distance between frame 3 and 2 = 3 × 0.1m = 0.3 m
Distance between frame 2 and 1 = 1 × 0.1m = 0.1 m

Total distance = 0.5 + 0.3 + 0.1 = 0.9 m

3. Jumping up process

Consider a girl jumping up. The whole process is divided into 3 small intervals (or 3 frames). Let
the total height is 0.3 m, then

Distance between frame1 and 2 = 1 × 0.075m = 0.075 m
Distance between frame2 and 3 = 3 × 0.075m = 0.0225 m

Total distance = 0.075 + 0.225 = 0.3 m

4. Jumping down process

Consider a girl jumping down through a distance 0.54 m. The whole process is divided into 4
frames, then

Distance between frame 4 and 3 = 5 × 0.06m = 0.3 m
Distance between frame 3 and 2 = 3 × 0.06m = 0.18 m
Distance between frame 2 and 1 = 1 × 0.06m = 0.06 m

Total distance = 0.3 + 0.18 + 0.06 = 0.54 m
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Motion Graphs

A graph of distance versus time is known as motion graph. It is also called as position-time graph 
or x-t graph. It is very important for animation because the nature of the motion is ascertained from 
the graph. Some of the motion graphs are as follows

Fig. (i) represents constant velocity and constant slope. There is no acceleration 
Fig. (ii) represents positively increasing slope and velocity. Hence acceleration is positive. More 
the acceleration more will be the curvature 
Fig.(iii) represents negatively increasing slope. It represents decreasing velocity. Hence it is 
deceleration  

Examples of Character Animation 

Motion of an object is an integral part of animation. By observing and studying the real life 
movements one can make the animation more attractive and lively. Jumping and walking are two 
real life actions where the entire body is in motion. Now we shall take up their character animation 
by applying the knowledge of physics in animation 

1. Jumping

Following are the different stages of jumping process. 
Crouch It is the bending pose taken as preparation for jumping.

Takeoff Character pushes up fast and straightens legs with feet still on the ground. The
in takeoff

position is called the push height. The amount of time (or number of frames) needed for
the push is called the push time.

In the air
moves in a parabolic arc. First it reaches a maximum height (apex), and then falls back to
the ground. The maximum height or jump height, is measured from the CG at takeoff to
the CG at the apex of the jump. The amount of time the character is in the air from takeoff
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to apex is called the jump time. If the takeoff pose and the landing pose are similar, then 
jump time is same for going up and coming down (it is exactly similar to time of ascent 
and time of descent in projectile motion).  

Landing Character touches the ground and bends knees to return to a crouch. The
und to the point where the

character stops crouching is called the stop height. The stop height is not always exactly
the same as the push height

Path of action It is the trajectory along which the character jumps

Calculations 

i. Calculation of jump timing

Let the jump height be 1.2 m and acceleration due to gravity is 9.8 ms-2. The jump time is 

This is the time taken to go from crouch position to apex position. As we know that the frame rate 
is 24 (FPS), the total number of frames for this action should be  24 × 0.5 = 12 frames 

ii. Jump magnification (JM)

The JM is the ratio of the jump height to the push height. 

It is also defined as the ratio of jump time and push time. It is used to calculate the push timing 
and stop timing. 



14 

 Physics of animation and statistical Physics 

In terms of acceleration it is given by 

[To prove Eq (3): (Optional not in syllabus) 

Jumping motion is equivalent to projectile motion. While going from crouch to take off position the girl will 
have some acceleration called push acceleration. After wards her body moves upward and experiences 
acceleration due to gravity. During downward motion she experiences gravity only.  

Jump velocity = push acceleration × push time (because v = at) 

Landing velocity = landing acceleration × jump time 

But the jump velocity shall be equal to landing velocity. Hence 

push acceleration × push time = landing acceleration × jump time 

Since landing acceleration is same as g we can write 

push acceleration × push time = g × jump time 

Hence the proof ]

Ex, if there are 15 frames and JM is 3 then 

According to Eq (2) 

iii. Jump height

The distance between CG at crouch and take off position is called push height. Assume that it is 
0.4 and JM is 3 then from eq (1) we get 

iv. Stop time

Since timing of the push and stop are same we can write 
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It may be noted here that the stop height is little bit longer than push height (because the girl may 
finally lay down on the ground after landing). For ex, if push height is 0.4, stop height is 0.5, push 
time 5 frames then 

2. Walking

Walking is another event where a lot of physics is involved and the animation of walking needs
the complete knowledge of mechanics. Walking is nothing but a step-by-step movement. Each
step is divided into 4 poses namely passing, step, contact, and lift. Also we need the concept of
Strides and steps as well as walking time

Strides and Steps

A step means one step with one foot. A stride means two steps, one with each foot. Step length is
the distance between two successive steps and Stride length is the distance between two parts of
the same step.  Step and stride length indicate lengthwise spacing for the feet during a walk.

Walk timing 

While walking each foot is in contact with ground for 60% of time (ie, single support) and both 
the feet will be in contact for 20 % of time (double support). In this connection we define a quantity 
called Gait. It is the timing of the motion for each foot, including how long each foot is on the 
ground or in the air. For normal walk it is about ½ second 

To walk faster, obviously one has to increase stride length and decrease the time of double support. 
A fast walk has a stride rate of about 4 feet/sec. If it becomes 6-7 then walking turns into running. 
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Statistical Physics 

Introduction 

Statistics is the area of applied mathematics that deals with the collection, organization, analysis, 
interpretation, and presentation of data.  

For ex, in the study of tiger population in a particular forest region, one has to use the statistical 
methods such as collecting all possible data (like number of tigers, deer, monkeys, area of the 
grass field etc) over definite period of time, arrange and compare
identify the differences and analyze, find out the reasons for the population variation, interpret
the result and present it in a convincing manner 

Statistical Physics

Statistics is equally important in Physics and it is called as statistical physics. It is basically 
evolved from statistical mechanics  

Statistical Physics is mainly intended to explain the properties of matter in total, in terms of 
physical laws governing atomic motion. It also explain numerous physical phenomena, such as 
superconductivity, magnetism, changes in states of matter, energy state distribution, electron 
distribution in metals, radioactivity, noise in electronic devices etc,

[Kinetic theory of gases is one of the best example in which macroscopic parameters such as 
kinetic energy, pressure and temperature are explained in terms of microscopic quantities-number 
of molecules and their rms velocity]

Descriptive statistics and inferential statistics 

Statistical techniques can be categorized as descriptive statistics and inferential statistics

The process of organizing and describing the known data using charts, bar graphs, etc., is known 
as descriptive statistics. It mainly focuses on describing the visible characteristics of a database. 
It enables researchers to present data in a more meaningful way such that easy interpretations can 
be made.

The process of making predictions or inferences (conclusions) and generalizations about the data 
is known as inferential statistics. When the data is very large it becomes difficult to use it. In such 
cases, certain samples are taken as representative of the entire population. Inferential statistics 
draws conclusions using these samples. 
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Both descriptive and inferential statistics need to be used hand in hand so as to analyze the data in 
the best possible way.

Ex:
Assume that you have the marks scored by 100 students (of a specific school where the total 
strength is 5000).
By using descriptive statistics, the spread of the marks can be done and can obtain a clear idea 
regarding the performance of each student.
Inferential statistics will now make use of this sample data of 100 students and make 
generalizations about the population (ie all 5000 students).

Introduction 
Look at these examples 

i. Count the number of accidents occurring in a metropolitan city in one year
ii. Count the number of deaths occurred in frequently flooded area
iii. Count the number of people visit a shopping mall a day
iv. Count the number of radioactive nuclei disintegrate in a sample
v. Count the number of collisions between electrons and lattice points in a sample of

given volume
vi. Count the number of website visitors per month

In all these examples we are counting some of the events (green color) occurring within a given 
interval of time or space or volume. Events are occurring randomly and independently. By 

-235 nuclei disintegrates now, it is impossible to predict when the 
other one will disintegrate (same thing is true in all the above examples). In such cases the 
probability of a given number of events occurring in a fixed interval of time or space is explained 
using distribution function

Definition and explanation

is a discrete distribution and describes probabilities for counts of events 
occurring in a specific interval of time or space. Counts may be random but over certain interval 
of time . The discrete outcome is a number represented by k. It is 
always non negative whole number. 

The Poisson distribution mass function is given by
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Where 
X is a random variable following a Poisson distribution 
k is the number of times an event occurs in given interval of time or space 
P is the probability that an event will occur k times

is the average number of times an event occurs

Ex:  
One of the first applications of the Poisson distribution was by statistician Ladislaus Bortkiewicz. 
In the 1870s he investigated accidental deaths by horse kick of soldiers in the Prussian army. 
He analyzed 20 years of data for 10 army corps (batch), (equivalent to 200 years of observations 
of one corps) 
He found that a mean of 0.61 soldiers per corps died from horse kicks each year. However, 
most years, no soldiers died from horse kicks. On the other end of the spectrum, one tragic year 
there were four soldiers in the same corps who died from horse kicks. 
Using modern terminology: 

The time interval is one year.

The number of deaths by horse kick in a specific year is k (=4).

The Poisson distribution may be useful to model events such as the radioactive decays, number of 
laser photons hitting a detector in a particular time interval, thermionic emission, scattering of 
particles etc 

A graph of P v/s k is known as Poisson distribution curve. It is as follows. 

looks more and more similar to a normal distribution

Ex.1. On a particular river, overflow floods occur once every 100 years on average. Calculate 
the probability of k = 0, 1, 2, 3, 4, 5, or 6 overflow floods in a 100 year interval, assuming the 
Poisson model is appropriate. 
Ans:  

= 1 (ie the average flood over 100 years occurs only once)



19 

 Physics of animation and statistical Physics 

Let k = 0

Let k =1

Let k =2

Ex.2. Careful measurements have established that a sample of radioactive thorium emits 
alpha particles at a rate of 1.5 per min. what is the expected average result in 2 min interval? 
What is the probability of getting this number? What is the probability for observing k
particles for k = 0, 1,2,3,4 & 5? (Here k is the number of counts or number of particles decay 
in any 2 min interval) 

Here = 1.5 × 2 = 3

Let k = 0 (ie, no decay in 2 min interval) and = 3

Let k =1 (ie, 1 decay in 2 min interval) and = 3

Let k =2 (ie, 2 decay in 2 min interval) and = 3

Let k =3 (ie, 3 decay in 2 min interval) and = 3

Let k =4 (ie, 4 decay in 2 min interval) and = 3

Let k =5 (ie,5 decay in 2 min interval) and = 3

These results are plotted as shown 
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Ex:3 On average each of the 18 hens lays 1 egg per day. If you check the hens once an hour 
and remove any eggs that have been laid what is the average number  of eggs you find on 
hourly visit?. Use Poisson distribution to calculate probability that you find k eggs for k = 0, 
1 , 2, 3 and 4 

Here 18 hens lay one egg each in 24 hours. Hence the average count per hour is 18/24 = 0.75 
ie = 0.75 

Let k = 0 (ie, no egg in 1hr interval) and = 0.75

Let k =1 (ie, 1 egg in 1hr interval) and = 0.75

Let k =2 (ie, 2 egg in 1hr interval) and = 0.75

Let k =3 (ie, 3 egg in 1hr interval) and = 0.75

Let k =4 (ie, 4 egg in 1hr interval) and = 0.75

Modeling the Probability for Proton Decay 

Background: 
In Physics there are some theoretical conservation laws which forbid certain specific reactions or 
decays to occur in nature. Many Experiments are intended to check the validity of these laws by 
searching for the presence (or absence) of such reactions or decays. If one or more events are 
observed in time T interval then the theoretical law is disproven. If no events are observed, the 
converse cannot be said to be true. Instead, a limit on the life-time of the reaction or decay is set. 
(This is a sort of Null Experiment aimed at setting confidence limits when no counts are observed).
One such example is life time of proton or proton decay
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Proton decay 

Proton decay is a theoretical form of particle decay. Here proton disintegrates into two particles 
namely pion and a positron with mean life of 1033 years which is very much greater than the age 
of the universe!. (Age of the universe is about 1 × 1010 years). If you have only one proton then 
you will have to wait for 1033 years to see the decay. But we know the decay is a statistical process. 
If there are huge number of protons then some of them may decay (if at all the decay is possible!)

Actually conservation laws forbid the proton decay. Despite many serious experiments and 
significant effort across the globe, even a single proton decay has never been observed so far. One 
such experiment is explained here

In Super-K detector (JAPAN) 50,000 tons of ultra-pure water containing 7×1033 protons is used. 
The 40% of the experimental ar -decay  

Consider the decay law 

Where 

N0 = initial number of protons at t = 0 = 7×1033

N = number of protons remain un decayed after t years 
(N0 N) = number of protons decayed in t  years 

= decay constant = 1/  (not to be confused with 33 = 10-33

Since is very small we can approximate 

Put N0 = 7×1033, t = 1 year and = 10-33 we get 

So, 7 decays (events) shall occur in every one year. Since there are 40% detectors, the average 
detected count must be 40% of 7 ie 2.8 or nearly 3. Hence the mean number of events =  = 3. 
Actually Super-K has started measurement since 1996 but not observed any evidence of proton 
decay yet. Hence k = 0.  
Substitute  = 3 and k = 0
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From this low probability for null result (i.e. no decay) Super-K scientists have come to a 
conclusion that the mean life of proton should be at least 2 × 1034 years! Does it mean that protons 
live longer than estimated time? or, 
have taken up this as a challenge and conducting deep underground neutrino experiment (Including 
India- long back such kind of experiment was initiated near KGF)

Normal distribution (Gaussian distribution) and Bell curve 

The Normal distribution is one in which the data tends to be distributed equally around a central 
value with no bias left or right. It is the most universal distribution and plays a central role in all 
of statistics. The distribution curve assumes bell shape and h .
The peak of the curve represents the mean or median 

Examples for normal distribution are 

heights of people
size of things produced by machines
errors in measurements
blood pressure
marks on a test

The Poisson distribution is applied to experiments where the data is strictly bounded on one side; 
the curve of the graph is highly asymmetric. It is approximated to normal distribution when P, the 
probability, and , the mean number of events are large. The Poisson distribution becomes more 
symmetric and assumes bell curve shape (as shown in fig) 

Monte Carlo Simulation 
Introduction 

In certain experiments the possible outcome is random and cannot be easily predicted. The 
outcome takes different values in each experimental trial. Hence the outcomes are called random 
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variables. Random variables are always real numbers. The likelihood that any of these possible 
values would occur is known as probability distribution.

The concept of random variable and probability distribution are better understood through these 
examples 

1. Consider the example of tossing of two coins. The probability of getting HEADS (or even TAILS)
is a random event and it is not likely to happen equally in all the trials. If we take Y as the random
variable (ie, getting H) it is either 0 (ie, no head), 1 (ie, one head) or 2 (ie two heads).  Since the
coins can land in 4 possible ways namely TT, TH, HT and HH then probability distribution of

i. P(Y = 0) = 1/4 ----- ie both coins land with TT
ii. P(Y = 1) = 1/2 ------ ie, either TH or HT
iii. P(Y = 2) = 1/4 ------ ie, both coins with HH

When you add all the probabilities we get 1, ie 1/4 + 1/2 + 1/4 =1 

2. Consider the rolling of a dice.
face of a die when it is rolled once. The possible values for Y will thus be 1, 2, 3, 4, 5, and 6. The
probability (P) of each of these values is 1/6 as they are all equally likely to be the value of Y

3. Consider the rolling of three dice.
resulting numbers after three dice are rolled. Y could be 3 (1 + 1+ 1) or18 (6 + 6 + 6) or somewhere
between 3 and 18 since the highest number of a die is 6 and the lowest number is 1.

In such types of uncertain processes the possible outcome is estimated using Monte Carlo method 
(also called as Monte Carlo simulation) 

Monte Carlo method 

Monte Carlo method is a mathematical technique used to estimate the possible outcomes of an 
uncertain events through repeated random sampling. It finds its application in many fields 
including business, physics, artificial intelligence, astronomy and engineering. 

NOTE: The technique was initially developed by Stanislaw Ulam, a mathematician who worked on the 
Manhattan Project, the secret project on nuclear bomb during II world war 

How does it works? 

In this method, the repeated random sampling and recalculating the results again and again is very 
important. However each time use different set of random numbers between the minimum and 
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maximum values. This exercise can be repeated thousands of times (or even more) to obtain a 
large number of likely outcomes. Monte Carlo techniques involves four basic steps

1. Set up the predictive model (domain identification), identifying both the dependent variable
and the independent variables (also known as the input, risk or predictor variables)

2. Specify probability distributions (generate unbiased inputs)of the independent variables.

3. Run simulations repeatedly (repeated random sampling), generating random values of the
independent variables.

4. Do this until enough results are gathered to make up a representative sample of the near
infinite number of possible combinations.

For ex, you want to find the average height of humans in India. The most accurate method is to 
t is impossible.

What is the next alternate? Find the height of few people randomly (say height of 100 members) 
and then take the average. If you do this only, say, in Karnataka the output (answer) is not a 
reliable one. Then what to do?? Follow these steps

i. Identify few states covering North, East, South and West part of the country(Identify
the  domains of possible inputs)

ii. Since height has inherent uncertainty, one has to measure the heights of selected
people within the selected state (generate the inputs)

iii. The sample selection must remain unbiased. If surveyors collect samples of tall or short
people, it will not give accurate results. Hence, the correct data would be obtained only
through fair sample selection using a probability distribution.(generate the inputs
randomly from a probability distribution over the domain)

iv. Take the average of the measured values.
v. Perform this procedure over and over, each time using a different set of random

numbers between the minimum and maximum values (Repeated random sampling))
vi. As samples would represent many people, data collectors need to use more and more

people as random samples. The greater the number of people, the better and more
accurate range of results will be.(repetition of the exercise thousands of times to
produce a better outcomes)

To determine the value of 

One of the basic examples of getting started with the Monte Carlo method is the estimation of 
(pi). It is as follows



25 

 Physics of animation and statistical Physics 

1. Consider a square of side length l = 2m and enclosing a circle of radius r = 1m. The center
of both circle and square coincides at (0,0)

2. Generate a large number of uniformly distributed random points. These points can be in
any position within the square i.e. between (0,0) and (1,1).

3. Keep track of the total number of points (NT), and the number of points that are inside the
circle (Ni)

4. We can show that the ratio of Ni and NT is equal to the ratio of area of the circle and the
square

5. By substituting the values of Ni and NT in the above equation we get the value of
6. When we only have a small number of points, the estimation is not very accurate, but when

we have hundreds of thousands of points, we get much closer to the actual value - to within
around 2 decimal places of accuracy. It can be verified using following examples

i. If  Ni = 169, &  NT = 200 then = 3.38 
ii. If  Ni =468, &  NT = 600 then = 3.12 
iii. If  Ni = 7067, & NT = 9000 then = 3.14 

Additional information: 
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Some of the salient features of Super-K experiment in Japan 

1. A cylindrical tank is buried 1km underground
2. The tank is 40 meter tall and 130ft radius
3. This tank contains 50,000 tons of ultra-pure water
4. 40% of the tank is covered by the detectors
5. In 1996 the scientists of super-K turned their detector ON and started looking for proton

decay
6. Even today (after 27 years) not a single decay is detected!

Image of Super-K plant 


